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Abstract. We use the linear sigma model coupled to quarks to compute the effective
potential beyond the mean field approximation, including the contribution of the ring
diagrams at finite temperature and baryon density. We determine the model couplings
and use them to study the phase diagram in the baryon chemical potential-temperature
plane and to locate the Critical End Point.

1 Introduction

The study of strongly interacting matter under extreme conditions, such as high temperature (T ) and
baryon chemical potential (µB), is of great importance in today’s physics. One of the principal goals
is to gather accurate knowledge of the phase diagram in the µ−T plane. In this work we use the linear
sigma model coupled to quarks, including the plasma screening effects, to explore the effective QCD
phase diagram, focusing on the chiral symmetry restoration. To do so, we fix the coupling constants
using the physical values of the model parameters, such as the vacuum pion and sigma masses, the
critical temperature Tc at µB = 0 and the conjectured maximum value of µB of the transition line at
T = 0.

2 Linear Sigma Model coupled to quarks

In order to study the spontaneous breaking of chiral symmetry with the intention of sketching the QCD
phase diagram at finite temperature and quark chemical potential. We use the Linear Sigma Model
coupled to quarks, that is an effective model that accounts for the physics of spontaneous symmetry
breaking. The Lagrangian for the linear sigma model when the two lightest quarks are included is
given by

L =
1
2

(∂µσ)2 +
1
2

(∂µ~π)2 +
a2

2
(σ2 + ~π2) −

λ

4
(σ2 + ~π2)2

+ iψ̄γµ∂µψ − gψ̄(σ + iγ5~τ · ~π)ψ, (1)
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where ψ is an SU(2) isospin doublet, ~π = (π1, π2, π3) is an isospin triplet and σ is an isospin singlet.
λ is the boson’s self-coupling and g is the fermion-boson coupling. a2 > 0 is the mass parameter. To
allow for an spontaneous breaking of symmetry, we let the σ field to develop a vacuum expectation
value v

σ→ σ + v, (2)

which can later be taken as the order parameter of the theory. After this shift, the Lagrangian can be
rewritten as

L = −
1
2

[σ∂2
µσ] −

1
2

(
3λv2 − a2

)
σ2

−
1
2

[~π∂2
µ~π] −

1
2

(
λv2 − a2

)
~π2 +

a2

2
v2

−
λ

4
v4 + iψ̄γµ∂µψ − gvψ̄ψ +Lb

I +L
f
I , (3)

where Lb
I and L f

I are given by

Lb
I = −

λ

4

[
(σ2 + (π0)2)2 + 4π+π−(σ2 + (π0)2 + π+π−)

]
,

L
f
I = − gψ̄(σ + iγ5~τ · ~π)ψ. (4)

Equation (4) describes the interactions among theσ, ~π and ψ fields after symmetry breaking. From
Eq. (3) one can see that the sigma, the three pions and the quarks have masses given by

m2
σ = 3λv2 − a2, m2

π = λv2 − a2, m f = gv, (5)

respectively. We study the behavior of the effective potential, which we deduce in the next section
in detail, in order to analyze the chiral symmetry restoration conditions in terms of temperature and
quark chemical potential.

3 Effective potential

In this section, we compute the T− and µ−dependent effective potential up to ring diagrams in order
to account for the plasma screening effects. The tree level potential is given by

V tree(v) = −
a2

2
v2 +

λ

4
v4, (6)

whose minimum is given by

v0 =

√
a2

λ
, (7)

since v0 , 0, we notice that the symmetry is spontaneously broken. To include quantum corrections at
finite temperature and density, we work within the imaginary-time formalism of thermal field theory.
The general expression for the one-loop boson contribution can be written as

V (1)b(v,T ) = T
∑

n

∫
d3k

(2π)3 ln D(ωn,~k)1/2, (8)

where



D(ωn,~k) =
1

ω2
n + k2 + m2

b

, (9)

is the free boson propagator with m2
b being the square of the boson’s mass and ωn = 2nπT the Mat-

subara frequencies for boson fields.
For a fermion field with mass m f , the general expression for the one-loop correction at finite

temperature and quark chemical potential µq is

V (1)f(v,T, µq) = −T
∑

n

∫
d3k

(2π)3 Tr[ln S (ω̃n − iµq,~k)−1], (10)

where

S (ω̃n − iµq,~k) =
1

γ0

(
ω̃n − iµq

)
+ 6k + m f

, (11)

is the free fermion propagator and ω̃n = (2n + 1)πT are the Matsubara frequencies for fermion fields.
The ring diagrams term is given by

VRing(v,T, µq) =
T
2

∑
n

∫
d3k

(2π)3 ln(1 + Π(mb,T, µq)D(ωn,~k)), (12)

where Π(mb,T, µq) is the boson’s self-energy. In order to compute the self-energy for one boson field,
we include all the contribution from the Feynman rules. Therefore, the self-energy is written as

Π(T, µq) =
∑

i=σ,π0,π±

Πi(T ) +
∑
j=u,d

Πj(T, µq), (13)

where

Πσ(T ) =
λ

4

[
12I

(√
m2
σ + Πσ

)
+ 4I

(√
m2
π0 + Ππ0

)
+ 8I

(√
m2
π± + Ππ±

)]
,

Ππ± (T ) =
λ

4

[
4I

(√
m2
σ + Πσ

)
+ 4I

(√
m2
π0 + Ππ0

)
+ 16I

(√
m2
π± + Ππ±

)]
,

Ππ0 (T ) =
λ

4

[
4I

(√
m2
σ + Πσ

)
+ 12I

(√
m2
π0 + Ππ0

)
+ 8I

(√
m2
π± + Ππ±

)]
, (14)

with

I(x) =
1

2π2

∫
dk

k2

√
k2 + x

n
(√

k2 + x
)
, (15)

and n(x) being the Bose-Einstein distribution. On the other hand, the fermion contribution is given by

Π j(T, µq) = −g2T
∑

n

∫
d3k

(2π)3 Tr[S (ω̃n − iµq,~k,m f )

× S (ω̃n − iµq − ω̃m,~k − ~p,m f )]. (16)

As we work close to the phase transition, a good approximation is to take the fermion’s mass
(m f = 0) and the boson’s mass including thermal correction (m2

i + Πi = 0) to be small. Therefore, the
total self-energy for one boson is



Π(T, µq) = −N f Ncg
2 T 2

π2 [Li2(−eµq/T ) + Li2(−e−µq/T )] +
λT 2

2
. (17)

With the boson self-energy at hand we can study the properties of the effective potential. In order
to work with analytical expressions we turn to study two cases: first the high temperature approxima-
tion (T � mb, µq) and then the low temperature approximation (T � mb, µq). In the following we
compute explicitly both cases.

3.1 High temperature approximation

As long as T is the largest of the energy scales, a high temperature approximation is suited to study
chiral symmetry restoration. Let’s start from Eq. (8), the one-loop correction for boson fields. First
we compute the sum over Matsubara frequencies

V (1)b(v,T ) =
1

2π2

∫
dk k2

{ √
k2 + m2

b

2
+ T ln

(
1 − e−

√
k2+m2

b/T
)}
. (18)

Notice that Eq. (18) has two pieces, the first one is the vacuum contribution and the second one is
the matter contribution, namely, the T -dependent correction. In order to compute the vacuum term,
we regularize and renormalize the former employing dimensional regularization and the Minimal
Subtraction scheme (MS), with the renormalization scale µ̃ = e−1/2a. For the matter term, we take the
approximation mb/T � 1 and we include only the most dominant terms [1, 2]. Taking all of this into
account, the one-loop contribution to the effective potential from fermion fields is given by

V (1)b
HT (v,T ) = −

m4
b

64π2

[
ln

(4πa2

m2
b

)
− γE +

1
2

]
−

m4
b

64π2 ln
( m2

b

(4πT )2

)
−
π2T 4

90

+
m2

bT 2

24
−

m3
bT

12π
. (19)

For the case of the fermion one-loop contribution, we follow the procedure outlined for the boson
case. For the matter term, we compute the integral in momentum taking into account the approxima-
tion where m f /T � 1 and µq/T < 1, and we consider only the dominant terms. After computing the
momentum integral we get

V (1)f
HT (v,T ) =

m4
f

16π2

[
ln

(4πa2

m2
f

)
− γE +

1
2

]
+

m4
f

16π2

[
ln

( m2
f

(4πT )2

)
− ψ0

(1
2

+
iµ

2πT

)
− ψ0

(1
2
−

iµ
2πT

)]
− 8m2

f T
2
[
Li2(−eµq/T ) + Li2(−e−µq/T )

]
+ 32T 4

[
Li4(−eµq/T ) + Li4(−e−µq/T )

]
. (20)

For the purposes of considering the plasma screening effects, we go beyond the mean field ap-
proximation. These can be accounted for by means of the ring diagrams. Since we are working in



the high temperature approximation, we notice that the lowest Matsubara mode is the most dominant
term [3]. Therefore, we do not need to compute the other modes and Eq. (12) becomes

VRing(v,T, µq) =
T
2

∫
d3k

(2π)3 ln(1 + Π(T, µq)D(~k))

=
T

4π2

∫
dk k2

{
ln(k2 + m2

b + Π(T, µq)) − ln(k2 + m2
b)
}
. (21)

From Eq. (21), we see that both integrands are almost the same except that one is modified by the self-
energy and the other one is not. Thus, after integration, we obtain that the ring diagrams contribution
is

VRing(v,T, µq) =
T

12π
(m3

b − (m2
b + Π(T, µq))3/2). (22)

With these pieces at hand, we can write the effective potential up to the ring diagrams contribution
in the high temperature approximation. The effective potential in the high temperature approximation
is given by

Veff
HT(v,T, µq) = −

(a2 + δa2)
2

v2 +
(λ + δλ)

4
v4

+
∑

b=σ,π̄

{
−

m4
b

64π2

[
ln

( a2

4πT 2

)
− γE +

1
2

]
−
π2T 4

90
+

m2
bT 2

24
−

(m2
b + Π(T, µq))3/2T

12π

}
+

∑
f =u,d

{ m4
f

16π2

[
ln

( a2

4πT 2

)
− γE +

1
2

− ψ0
(1
2

+
iµq

2πT

)
− ψ0

(1
2
−

iµq

2πT

)]
− 8m2

f T
2
[
Li2(−eµq/T ) + Li2(−e−µq/T )

]
+ 32T 4

[
Li4(−eµq/T ) + Li4(−e−µq/T )

]}
. (23)

Notice that the potentially dangerous pieces coming from linear or cubic powers of the boson mass,
that could become imaginary for certain values of v, are removed or replaced by the contribution of
the ring diagrams [4].

3.2 Low temperature approximation

To have access to the region in the QCD phase diagram where µB is large and T is small, we compute
the effective potential in the approximation where T is the soft scale in the system. We call this the low
temperature approximation. For boson fields case, we include a boson chemical potential. We relate
this to the conservation of an average number of particles and not to a conserved charge. Therefore,
the one-loop contribution for boson fields after the sum over Matsubara frequencies is



V (1)b
LT (v,T, µb) =

1
2π2

∫
dk k2

{√
k2 + m2

b

+ T ln
(
1 − e−(

√
k2+m2

b−µb)/T
)

+ T ln
(
1 − e−(

√
k2+m2

b+µb)/T
)}
. (24)

In Eq. (24), the matter contribution has two terms corresponding to particles and anti-particles. In
this work, we follow the procedure used in Ref. [5]. The general idea consists on developing a Taylor
series around T = 0 of the following expression

V (1)b
LT (v,T, µb) =

∫ ∞

µb−mb
T

Vb
0 (v, µb + xT )hB(x)dx, (25)

where hB(x) is the first derivative of the Bose-Einstein distribution and Vb
0 (v, µb + xT ) is the one-loop

boson contribution evaluated at T = 0, which is

V (1)b
0 (v, µb) = −

m4
b

64π2

[
ln

( 4πa2

(µb +

√
µ2

b − m2
b)2

)

− γE +
1
2

]
+
µb

√
µ2

b − m2
b

96π2 (2µ2
b − 5m2

b). (26)

From here, the Taylor series give us an expression of one-loop matter contribution from one boson
field in the low temperature approximation

V (1)b
LT (v,T, µb) = Vb

0 (v, µb) +
π2T 2

12
∂2

∂T 2 Vb
0 (v, µb) +

7π4T 4

1260
∂4

∂T 4 Vb
0 (v, µb). (27)

For fermion fields, we implement the low temperature approximation in the same way as we did for
boson fields. We now develop a Taylor series around T = 0 and we get the one-loop contribution for
one fermion field in the low temperature approximation

V (1)f
LT (v,T, µq) = V f

0(v, µq) +
π2T 2

6
∂2

∂T 2 V f
0(v, µq) +

π4T 4

360
∂4

∂T 4 V f
0(v, µq). (28)

Equations (6), (27) and (28) provide the full expression for the effective potential in the low tem-
perature approximation, which is given by



Veff
LT(v,T, µq, µb) = −

(a2 + δa2)
2

v2 +
(λ + δλ)

4
v4

−
∑
i=σ,π̄

{ m4
i

64π2

[
ln

( 4π2a2

(µb +

√
µ2

b − m2
i )2

)
− γE +

1
2

]

−

µb

√
µ2

b − m2
i

24π2 (2µ2
b − 5m2

i ) −
T 2µb

12

√
2µ2

b − 5m2
i

−
π2T 4µb

180
(2µ2

b − 3m2
i )

(µ2
b − m2

i )3/2

}
+ Nc

∑
f =u,d

{ m4
f

16π2

[
ln

( 4π2a2

(µq +
√
µ2

q − m2
f )

2

)

− γE +
1
2

]
−

µq

√
µ2

q − m2
f

24π2 (2µ2
q − 5m2

f ) −
T 2µq

6

√
µ2

q − m2
f

−
7π2T 4µq

360

(2µ2
q − 3m2

f )

(µ2
q − m2

f )
3/2

}
(29)

We are now able to analyze the QCD phase transition in the regions of the QCD phase diagram
where the temperature is larger than the quark chemical potential and where the temperature is smaller
than the quark chemical potential. To do so, first we need to determine the value of all the parameters
involved in the linear sigma model under appropriate conditions. In the following section we proceed
in this direction to determine the values of those parameters and in particular of the couplings λ and
g.

4 Coupling Constants

The effective potential has tree free parameters which should be fixed: the two coupling constants λ
and g and the square mass parameter a2. In order to determine the square mass parameter, we use that
the vacuum boson masses in Eq. (5) are related by the expression

a =

√
m2
σ − 3m2

π

2
. (30)

Therefore, we can fix a by using the vacuum sigma and pion masses. To fix the coupling constants
we use physical inputs from QCD matter around the phase transition in the high and low temperature
domains.

First from LQCD computations [6], we know that at µq ≡ µB/3 = 0, the QCD phase transition
is a crossover (in our case a second order transition), and happens for the case of two light flavors
at T c

0 ' 170 MeV. On the other hand, at very low values of T and high values of µq the transition is
first order. In addition, from the analysis based on the Hagedorn’s limiting temperature [7] at finite
µB, we know that the critical value for the transition curve to intersect the horizontal axis in the QCD
diagram is µB ' mB, where mB ' 1 GeV is the typical value of the baryon mass. In one or the
other case, since the pion field is a Goldstone mode, the thermal pion mass evaluated at the minima
of the potential always vanishes. Then, to fix the coupling constants we use as inputs the values of
temperature and quark chemical potential in two extreme points along the transition curve, namely,
when the restoration of chiral symmetry is at µq = 0 (refer as point A) and when it is at T = 0 (refer
as point B).
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Figure 1. QCD phase diagram obtained from the solutions to the equations that determine the coupling constants.
This are computed with T c

0(µq = 0) = 170 MeV and µc
q(T = 0) = 340 MeV. The second order transitions are

indicated by red line and the first order transitions by the blue line. These areas represent the results directly
obtained from our analysis.
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Figure 2. QCD phase diagram obtained from the solutions to the equations that determine the coupling constants.
This are computed with T c

0(µq = 0) = 165 MeV and µc
q(T = 0) = 330 MeV. The second order transitions are

indicated by red line and the first order transitions by the blue line. These areas represent the results directly
obtained from our analysis.

At point (A), the phase transition is second order, hence the square of the pion thermal mass,
evaluated at v = 0 and T = T 0

c , is given by

m2
π(0,T

c
0 , µq = 0) = −a2 + Π(T c

0 , µq = 0) = 0. (31)

At point (B), the phase transition is first order (degenerates minimal), therefore the minimum we are
considering is the one with a vacuum expectation value different from zero, which we call v1. This
last condition can be written as



Table 1. Physical inputs from points A and B and for vaccum bosons masses

Input Fig. 2 Fig. 2
Vaccum mπ 139 MeV 139 MeV
Vaccum mσ 475 MeV 475 MeV
T 0

c (µq = 0) 170 MeV 165 MeV
µ0

c(T = 0) 340 MeV 330 MeV
(λ, g) (0.87,1.57) (0.91,1.61)

m2
π(v1, 0, µc

q) = λv1 − a2 + Π(0, µc
q) = 0, (32)

In Eq. (32), we notice that a new unknown appears: v1, that is, the value of the non-vanishing
minimum. In order to guarantee that the order of the transition in points A and B is consistent with the
physical input, we need to add counter-terms δa2 and δλ to the bare constants a2 and λ, respectively,
in the tree level potential

V tree = −
a2

2
v2 +

λ

4
v4

→ −
(a2 + δa2)

2
v2 +

(λ + δλ)
4

v4. (33)

Therefore the set of conditions necessary to determine v1 and the counter-terms is

∂2Veff

∂v2 (v = 0,T = Tc, µq = 0) = 0, (34)

∂Veff

∂v
(v = 0,T = 0, µq = µc

q) = 0,
∂Veff

∂v
(v = v1,T = 0, µq = µc

q) = 0,

Veff(v = 0,T = 0, µq = µc
q) = Veff(v = v1,T = 0, µq = µc

q). (35)

The expressions in Eq. (34) indicate that the effective potential is second order when µ = 0 and
T = Tc and the three expressions in Eq. (35) indicate that the effective potential has two degenerated
minima at the phase transition and thus that the transition is first order when T = 0 and µq = µc

q. The
above set of conditions, Eqs. (31), (32) and (35), represent the five algebraic equations that determine
the values of λ and g. Finally, we can explore the QCD phase diagram.

5 Results

Figures 1–2 show the phase diagrams thus obtained. These are computed using the inputs in Table 1.
We find that at high (low) temperature and low (high) quark chemical potential the phase transitions
are second (first) order. The second order transitions are indicated by the red line and the first order
transitions by the blue line. These areas represent the results directly obtained from our analysis. In
all cases, we locate the CEP’s region at low temperatures and high quark chemical potential.



6 Summary

In this work we have used the linear sigma model with quarks to explore the QCD phase diagram from
the point of view of chiral symmetry restoration. We have computed the finite temperature effective
potential up to the contribution of the ring diagrams to account for the plasma screening effects. For
high quark chemical potential we introduced a boson chemical potentials linked to the high baryon
abundanceand.

Our approach was to determine the model’s couplings using physical inputs such as the vacuum
pion and sigma masses, the LQCD value for the critical temperature at µq = 0 and the conjectured
end point value of µB of the transition line at T = 0. The set of conditions that determine the cou-
plings enforce the requirement that at high temperature the transition is second order whereas at low
temperature is first order.

In order to provide a more robust CEP’s location, we need to include the temperature and density
modifications to the couplings which has been shown useful to describe the inverse magnetic catalysis
phenomenon [8]. For more explicit details, the reader us referred to Ref [9].
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