Measurement of photon (also +jets) production cross sections, jets production cross sections and extraction of the strong coupling constant

ISMD2017 Tlaxcala City, Mexico

Miguel Villaplana

Università degli Studi e INFN Milano

on behalf of the ATLAS Collaboration

September 11, 2017

Outlook

• Photon physics

- Inclusive γ at 13 TeV. (Phys. Lett. B770 (2017) 473-493)
- Diphoton at 8 TeV. (Phys. Rev. D 95 (2017) 112005)
- Inclusive γ + jet at 8 TeV. (Nucl.Phys. B918 (2017) 257-316)
- Inclusive γ + jet at 13 TeV. (ATLAS-CONF-2017-059)

• Jet physics

- Inclusive-jet cross-section at 8 TeV (20.2 fb⁻¹) (arXiv:1706.03192)
- Inclusive-jet and dijet cross-sections at 13 TeV (3.2 fb⁻¹) (ATLAS-CONF-2017-048)
- TEEC measurements and extraction of α_s (arXiv:1707.02562)

A complete list of ATLAS Standard Model results can be found here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Prompt photons in pp collisions

- Measurements of the production of high p_T prompt photons (in association with jets) and pairs of photons in hadron colliders provide
 - tests of pQCD predictions
 - constraints on the proton PDFs
 - input to understand QCD background to Higgs production and BSM searches
- Prompt photons in pp collisions are produced via two mechanisms: direct-photon and fragmentation processes

Inclusive isolated photons at 13 TeV Phys. Lett. B 770 (2017) 473

- Testing pQCD with a hard colourless probe
- Sensitive at LO to the gluon PDF
- Photon selection:
 - $\circ~~E_T^{~\gamma}>125~GeV$ and $|\eta^{\gamma}|<2.37,$ excluding the region 1.37 $<|\eta^{\gamma}|<1.56$
 - photon ID
 - \circ photon isolation: $E_{T}^{iso}~(R=0.4)<4.8~GeV+4.2\cdot10^{-3}\times E_{T}^{~\gamma}$
- Background subtracted with data-driven technique

Inclusive isolated photons at 13 TeV Phys. Lett. B 770 (2017) 473

- Photon energy scale is the dominant uncertainty at high E_τ
- Background subtraction largest at low E_T
- Identification uncertainty ~5% at high E_{T}
- Uncertainties are larger in the forward regions

Inclusive isolated photons at 13 TeV Phys. Lett. B 770 (2017) 473

- NLO pQCD predictions (JetPhox)
 - underestimate the measurements
 - Theoretical uncertainties > experimental in most regions
 - Statistical uncertainty takes over beyond 1 TeV
 - Different PDFs show up to 15% difference
 - \circ Demonstrates sensitivity to help constrain PDFs. Especially for large ${\sf E}_{{\sf T}}$
- Comparisons would benefit from reduced scale uncertainties

Inclusive isolated photons at NNLO (8 TeV)

- New prediction for inclusive photon production at NNLO available! (ArXiv:1612.04333)
- QCD NNLO predictions have been compared to ATLAS inclusive photon measurements at 8 TeV

- Theoretical uncertainty reduced by a factor ~3 with respect to PeTeR
- Trend of the calculations to be above the data at high E_{T}

Phys. Rev. D 95 (2017) 112005

- Sensitive to a_s corrections
- Sensitive to QCD infrared emission
- Main background for $H \rightarrow \gamma \gamma$

Selection	Leading γ	Subleading γ
Min. transverse energy	$E_{\mathrm{T},1}^{\gamma} > 40 \mathrm{~GeV}$	$E_{\mathrm{T},2}^{\gamma} > 30~\mathrm{GeV}$
Pseudorapidity	$ \eta^{\gamma} < 1.37$ or $1.56 < \eta^{\gamma} < 2.37$	
Min. angular separation	$\Delta R_{\gamma\gamma} > 0.4$	
Max. transverse isolation energy	$E_{\mathrm{T}}^{\mathrm{iso, part}}(\Delta R = 0.4) < 11 \text{ GeV}$	

- Variables sensitive to new physics: m_{vv} , $|cos(\theta_n^*)|$
- Variables sensitive to higher order and QCD ISR: $p_{T,yy}$, $\Delta \phi_{yy}$
- New variables sensitive to QCD ISR emissions: $a_T^{}$, ϕ_n^{*}
 - Nucl. Instrum. Meth. A 602 (2009) 432437
 - Eur. Phys. J. C 71 (2011) 1600

Phys. Rev. D 95 (2017) 112005

- Main experimental systematic:
 - photon identification and isolation
 - less than factor 2 wrt 7 TeV
- Cross section from fixed order calculation lower than data
 - Improvement NLO→NNLO

 $\sigma^{\sf fid} = 16.8 \pm 0.8 \, {\sf pb} = 16.8 \pm 0.1 ({\sf stat}) \pm 0.7 ({\sf exp}) \pm 0.3 ({\sf lumi}) \, {\sf pb}$

Phys. Rev. D 95 (2017) 112005

- Fixed-order calculations are not expected to give reliable predictions in regions sensitive to infrared emissions
- The effects of infrared emissions are well reproduced by the inclusion of soft-gluon resummation at NNLL
- Sherpa and RESBOS do a good job at low a_T or ϕ_n^*
 - PS and resummation
- DIPHOX and 2yNNLO do not

Jets in ATLAS

- Jet production is the dominant high- p_T process in the LHC
- Jet observables play an important role in the study of:
 - \circ The structure of the proton
 - $\circ \quad \mbox{The color interaction and} \\ \mbox{its coupling strength } \alpha_s \\ \mbox{}$
- Anti- k_{T} jets
- Built considering topological clusters of calorimeter cells
- Clusters corrected for pileup prior to jet building
- Multi-stage calibration scheme
- Larger energy scale uncertainty than photons

Photon + jets at 8 TeV

- Constrain gluon PDF
- Tests kinematics of photon+multijet production
- Provides input for PDFs
- Testing ground for BSM physics
- Photon selection:
 - $\label{eq:excluding the region 1.37} \begin{array}{l} {}_{T} E_{T}^{\ \gamma} > 130 \ GeV \ and \ \left| \eta^{\gamma} \right| < 2.37, \\ excluding the region \ 1.37 < \left| \eta^{\gamma} \right| < 1.56 \end{array}$
 - photon ID
 - \circ photon isolation: $E_{_{T}}^{_{iso}}~(R=0.4) < 4.8~GeV + 4.2\cdot 10^{-3} \times E_{_{T}}^{^{\gamma}}$
- Jet selection:
 - \circ P_T > 50 GeV, |y_i| < 4.4

- 15 observables of the following types:
 - Kinematic: $E_{T,\gamma}$, $P_{T,jet}$
 - $\circ \quad \text{Dynamic: } m_{\gamma, jet}, \, \Delta \phi_{\gamma, jet}, \, \Delta \phi_{jet, jet}$
 - Virtual particle spin: |cosθ*|
 - New: parton radiation around γ or jet1: β_{v} , β_{iet1}

Photon + 1 jet at 8 TeV

- NLO predictions with JetPhox + CT10 PDF
 - Give a good agreement in both normalization and shape

Photon + 2 jets at 8 TeV

- SHERPA better than Pythia in multijet region
- Data are well described by BlackHat
 - Visible deviation for E_{τ} > 750 GeV wrt NLO prediction

Photon + 2 jets at 8 TeV

Nucl.Phys. B918 (2017) 257-316

• First observation of different QCD radiation pattern around the photon and 1st jet

- Enhancements in the directions towards the beams
- Better agreement with SHERPA

π - $\beta = \pi$ $\beta = 0$ R=1.5 φ 0.0- $\beta = \pi/2$ Photos -π ק -4.4 4.4 2.37 -2.37 0.0 π - $\beta = \pi/2$ φ0.0- $\beta = 0$ -π ¬ -4.4 4.4 2.37 -2.37 0.0 η

Photon + 3 jets at 8 TeV

- First measurement at ATLAS
- BlackHat calculation slightly overestimates the data

Photon + 1 jet at 13 TeV

ATLAS-CONF-2017-059

- Extended reach to $E_{T} = 1.5 \text{ TeV}$
- Sherpa describes well the data
- Pythia overestimates jet P_τ
 - large contribution from photon bremsstrahlung
- Both simulations describe angular distributions

Photon + 1 jet at 13 TeV

ATLAS-CONF-2017-059

• NLO predictions

- JetPhox does the best job
- Sherpa (ME+PS@NLO QCD) fails to describe high jet P_T
- Theoretical uncertainties > experimental. Main contribution: terms beyond NLO

M.Villaplana Università degli Studi e INFN Milano

Inclusive jet production at 13 TeV

ATLAS-CONF-2017-048 (8 TeV measurement in arXiv:1706.03192)

- Measurement based on 3.2 fb⁻¹ of data taken in 2015
 - \circ R=0.4 anti-k_T jets
 - \circ jet p_T > 100 GeV, jet rapidity |y| < 3
- Double differential measurement in jet p_{τ} and y
 - jet energy scale and resolution uncertainties generally below 5% central, 10% forward

Inclusive jet production at 13 TeV

ATLAS-CONF-2017-048

- Increased p_{T} reach wrt Run1 measurement (up to 3 TeV!)
- Good agreement with NLO predictions at log scale

Inclusive jet production at 13 TeV ATLAS-CONF-2017-048

- Generally good agreement with NLO pQCD within uncertainties
- Shape consistent between various PDF sets
 - Exceptions are HERAPDF 2.0 and ABMP16 in the central region
- LO tends to overshoot data for |y| > 2.0 with CT14, MMHT 2014 & NNPDF 3.0

Inclusive jet production at 13 TeV

ATLAS-CONF-2017-048

- NNLO pQCD based on arXiv: 1611.01460v2, arXiv: 1704.00923
- Generated using the NNLOJET program & MMHT 2014 NNLO PDF
- Ratio of NLO and NNLO theory predictions to data

• p_T^{jet} better than p_T^{max} for the QCD scale

Dijet production at 13 TeV ATLAS-CONF-2017-048

- Measurement based on 3.2 fb⁻¹ of data taken in 2015
 - \circ R=0.4 anti-k_T jets
 - \circ jets with p_T > 75 GeV, jet rapidity |y| < 3
 - \circ H_{T2} = p_{T1} + p_{T2} > 200 GeV
 - Reduces instabilities in the NLO cross-section calculation
- Double differential measurement in M_{jj} and $y^* = |y_1 y_2| / 2$

• Experimental systematic uncertainties near 5% for medium M_{ii}, rising to 30% at highest M_{ii}

Dijet production at 13 TeV ATLAS-CONF-2017-048

• First measurement of dijet cross-section at 13 TeV

Dijet production at 13 TeV ATLAS-CONF-2017-048

- Good agreement between NLO pQCD and data within uncertainties
- Detailed χ^2 tests made for each PDF set
 - \circ fair agreement in individual M_{ii} and y* bins
 - fair agreement as well when fitting to all y* regions

TEEC in multi-jet events at 8 TeV

arXiv:1707.02562

• Transverse energy-energy correlation (TEEC):

 $\frac{1}{\sigma} \frac{d\Sigma}{d(\cos\phi)} = \frac{1}{\sigma} \sum_{ij} \int \frac{d\sigma}{dx_{Ti} dx_{Tj} d(\cos\phi)} x_{Ti} x_{Tj} dx_{Ti} dx_{Tj}$ where $x_{Ti} = E_{Ti}/E_T$ and $E_T = \sum_i E_{Ti}$

- Event shape used in e⁺e⁻, adapted to pp
- Essentially an energy-weighted ratio of three-jet to two-jet cross-sections
- Exhibits quadratic dependence on α_s
- Measures angular distributions of jet pairs weighted by

$$w_{ij} = x_{\mathrm{T}i} x_{\mathrm{T}j} = \frac{E_{\mathrm{T}i} E_{\mathrm{T}j}}{\left(\sum_{k} E_{\mathrm{T}k}\right)^2}$$

- Analysis strategy:
 - at least 2 jets with $p_T > 100$ GeV, $|y^{jet}| < 2.5$
 - \circ p_{T1} + p_{T2} > 800 GeV
 - Total uncertainty is about 5%

TEEC in multi-jet events at 8 TeV

arXiv:1707.02562

- Resulting detector-level distributions are normalized to the total number of events
- Data distributions are unfolded back to the particle level
 - Iterative Bayesian method. Pythia used to build transfer matrix
- Compared with Pythia8, Sherpa, and Herwig++

M.Villaplana Università degli Studi e INFN Milano

TEEC in multi-jet events at 8 TeV: α_s(m_z) measurement arXiv:1707.02562

• $\alpha_s(m_7)$ extraction from χ^2 fit of TEEC and ATEEC NLO predictions to data varying the value of α_s in NLOJet++

 $\alpha_{\rm s}(m_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} {}^{+0.0076}_{-0.0061} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)}.$

 $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0013$ (exp.) $^{+0.0061}_{-0.0013}$ (scale) ± 0.0017 (PDF) ± 0.0004 (NP).

- Excellent compatibility between World Average and ATLAS jet-based measurements
- Very good experimental precision. Uncertainty dominated by the unc. in theory predictions

M.Villaplana Università degli Studi e INFN Milano

Summary

- Photon physics
 - Direct photons at 13 TeV 0
 - NLO predictions provide an adequate description.
 - Theoretical uncertainties > experimental: NNLO pQCD corrections are needed
 - Diphoton at 8 TeV: 0
 - Systematic uncertainty decreased by a factor 2 wrt 7 TeV on the cross section
 - Precise probe of QCD infrared emissions (a_T, ϕ_η^*) complementary to Drell-Yan Improvement with NNLO but still more than 2σ away

 - Soft gluon resummation at NNLL (RESBOS) provides a good description of infrared emissions
 - SHERPA 2.2.1 (ME+PS at NLO) provides good predictions at particle level
 - Photon+jet(s) at 8 TeV 0
 - Very detailed analysis: 6 regions, 35 cross sections
 - First observation of different QCD radiation pattern around the photon and 1st jet
 - Stringent tests of pQCD up to $O(a_{EM} a_s^4)$
 - Photon+jet at 13 TeV 0
 - Comparison with SHERPA ME+PS@NLO

Summary

- Jet pythics
 - Inclusive jet cross section at 7, 8 and 13 TeV
 - Good agreement of pQCD at NLO
 - NNLO comparisons
 - Test of PDFs particularly in the forward rapidities
 - First measurement of dijet cross-sections at 13 TeV
 - Transverse energy-energy correlations in dijet events
 - Used to extract the strong coupling constant
 - TEEC/ATEEC:

 $\alpha_{\rm s}(m_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} \stackrel{+0.0076}{_{-0.0061}} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)},$ $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0013 \text{ (exp.)} \stackrel{+0.0061}{_{-0.0013}} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0004 \text{ (NP)}.$

• Comparable to 7 TeV result:

$$\alpha_{\rm s}(m_Z) = 0.1173 \pm 0.0010 \text{ (exp.)} ^{+0.0065}_{-0.0026} \text{ (theo.)}$$

M.Villaplana Università degli Studi e INFN Milano

Thanks

The ATLAS detector

Prompt photon in pp collisions

- In addition to prompt photons, photons are produced copiously inside jets (eg, π^0 decays)
 - it is essential to require isolation to study prompt photons in hadron colliders

 The isolation requirement is based on the energy deposited inside a circle of radius R centered on the photon in the η-φ plane (not counting energy depositions coming from the photon itself)

$$E_{\mathrm{T}}^{\mathrm{iso}} \equiv \sum_{i} E_{T}^{i} < E_{T}^{\mathrm{max}}$$

It is able to suppress most of the contribution of photons inside jets (from π⁰'s and other neutral mesons decays) and the fragmentation contribution

Phys. Rev. D 95 (2017) 112005

- In most parts of the phase space, the fixed order predictions are unable to reproduce the data
- Improvement NLO -> NNLO
- SHERPA provides the best description
- 2 γ NNLO performs well at high mass and P_T

- Selection
 - jet p_T > 70 GeV
 - \circ jet rapidity |y| < 3
- Measurement made with both R=0.4 and 0.6 jets
- Double differential measurement in jet p_T and y

- 11 orders of magnitude for central rapidity!
- Good agreement with NLO theory on log scale

- Dominant experimental uncertainties are jet energy scale and resolution
 - \circ both well below 10% except at highest jet p_T

• PDFs, renormalization and factorization scales, α_s variations in theory systematic uncertainty

- Theory predictions corrected for non-perturbative and electroweak effects
 - ATLAS Preliminary Use a variety of PDFs 1.5≤|y|<2.0 y|<0.5 ata Dat $L = 20.3 \text{ fb}^{-1}$ Theory/D Theory/ √s = 8 TeV anti- $k_{t} R = 0.4$ 0.6 2.0≤|y|<2.5 0.5≤|y|<1.0 Data NLO pQCD 计计算机 化化合金化合金化合金化合金 $\otimes \, k_{\rm EW}^{\rm Pythia8\,AU2CT10} \\ \otimes \, k_{\rm NP}^{\rm Pythia8\,AU2CT10}$ 0.6 $\mu_{R} = \mu_{F} = p_{T, jet}^{max}$ 0.4 1.5 1.0≤|y|<1.5 2.5≤|y|<3.0 • CT14 HERAPDF20 NNPDF30 * * * * * * * * * * * * MMHT14 70 10² 10^{3} 2×10³ 70 10² 2×10² 10³ 2×10² p_[GeV] p___[GeV]
- Good agreement with NLO pQCD prediction (NLOJet++) at higher jet p_T
- NLO overestimates data for jet p_{τ} below 100 GeV and above 1 TeV
- HERAPDF2.0 is significantly lower than data in $300 < p_T < 1000$ GeV

- Powheg (NLO+PS) below NLOJet++ at low p_τ
 - \circ tendency to be below the data toward higher p_{τ}
 - for $p_{\tau} > 1$ TeV different behaviour than NLO QCD
- Powheg prediction less dependent on the jet radius

M.Villaplana Università degli Studi e INFN Milano

TEEC in multi-jet events at 8 TeV

arXiv:1707.02562

- Compared to NLO pQCD predictions using NLOJET++
 - corrected for non-perturbative effects 0
 - renormalization scale set to H_{T_2} 0
 - factorization scale set to H_{T_2} / 2 0

pQCD correctly describes the data within uncertainties