Photon production induced by magnetic fields in HICs: photon yield and elliptic flow.



Luis A. Hernandez

PHYSICAL REVIEW D 96, 014023 (2017)

Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

Alejandro Ayala,<sup>1,2</sup> Jorge David Castaño-Yepes,<sup>1</sup> C. A. Dominguez,<sup>2</sup> L. A. Hernández,<sup>1</sup> Saúl Hernández-Ortiz,<sup>1</sup> and María Elena Tejeda-Yeomans<sup>3</sup>

September 11, 2017

Instituto de Ciencias Nucleares, UNAM.



## Outline











## Thermal photon puzzle.



J-F Paquet et al., Phys. Rev. C 93, (2016) 044906



## Thermal photon puzzle.



J-F Paquet et al., Phys. Rev. C 93, (2016) 044906



## Thermal photon puzzle.



J-F Paquet et al., Phys. Rev. C 93, (2016) 044906

- Data status of direct photons. Excess at low  $p_t$ .
- Data/model comparisons.

• New processes to explain the excess.



## Data vs Models 2014

## O. Linnyk, E. L. Bratkovskaya and W. Cassing, Prog. Part. Nucl. Phys. **87** (2016) 50-115.



- Transport model: O. Linnyk, E. L. Bratkovskaya and W. Cassing, Phys. Rev. C89, 034908 (2014).
- Fireball model: H. van Hees, C. Gale and R. Rapp, Phys. Rev. C84, 054906 (2011).
- Hydro model: C. Shen, U. W. Heinz, J.-F. Paquet and C. Gale, Phys. Rev. C89, 044910 (2014).



## Update Data vs Models 2016

#### PHENIX compared to models.





C. Shen, arXiv:1601.02563.



# Conditions for a new mechanism to produce $\gamma ' {\bf s}$



#### By Chun Shen

We compute the production of prompt photons from the perturbative fusion of low momentum gluons coming from the shattered glasma.



## Magnetic fields in HICs.







D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227 (2008)



V. Voronyuk et al., Phys. Rev. C 83, 054911 (2011)



V. Skokov, A. Y. Illarionov and V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)



## Nonequilibrate gluons.

- Over-occupied initial state called the glasma.
- Saturation effects  $\rightarrow$  times of order  $\tau_s \sim 1/\Lambda_s$
- $\Lambda_s \equiv$  saturation scale.
- $\Delta \tau_s \simeq 1-1.5 {\rm fm}$





## Photons from magnetic fields.



Photon

• Trace anomaly converts energy-momentum of gluon bulk into photons.

G. Basar, D. Kharzeev and V. V. Skokov, Phys. Rev. Lett. **109**, 202303 (2012).

 Photon emission by quarks synchrotron radiation.
 K. Tuchin, Phys. Rev. C91, 0124902 (2015).



## Gluon fusion induced by eB



The quark propagator is written in its coordinate space representation as

$$S(x,x')=\Phi(x,x')\int \frac{d^4p}{(2\pi)^4}e^{-ip\cdot(x-x')}S(p),$$

where

$$\Phi(x,x') = \exp\left\{i|q_f|\int_{x'}^{x} d\xi^{\mu}\left[A_{\mu} + \frac{1}{2}F_{\mu\nu}(\xi - x')^{\nu}\right]\right\},\$$

the Schwinger phase factor.



## Strong magnetic fields.

The translational invariant part of the propagator is written in terms of Landau levels, since the strength of the magnetic fields is dominant, therefore we consider the Lowest Landau Level (LLL) or at most the first Landau Level (1LL)

$$S^{\text{LLL}}(p) = -2ie^{-\frac{p_{\perp}^{2}}{|q_{f}B|}} \frac{\not{p}_{\parallel}}{p_{\parallel}^{2}} \mathcal{O}_{\parallel}^{+},$$
  

$$S^{\text{LLL}}(p) = \frac{e^{-\frac{p_{\perp}^{2}}{|q_{f}B|}}}{p_{\parallel}^{2} - 2|q_{f}B|} \left\{ \not{p}_{\parallel} \mathcal{O}_{\parallel}^{+} \left[ 1 - \frac{2p_{\perp}^{2}}{|q_{f}B|} \right] - \not{p}_{\parallel} \mathcal{O}_{\parallel}^{-} + 4 \not{p}_{\perp} \right\}.$$

with

$$\mathcal{O}_{\parallel}^{\pm} = \left[1 \pm (\operatorname{sign}(q_f B))i\gamma_1\gamma_2\right]/2$$



## Notation

- $\boldsymbol{B} = B\hat{z}$ .
- Vector potential  $A^{\mu} = \frac{B}{2}(0, -y, x, 0)$  (symmetric gauge).

• 
$$p_{\perp}^{\perp} \equiv (0, p_1, p_2, 0),$$
  
 $p_{\parallel}^{\mu} \equiv (p_0, 0, 0, p_3),$   
 $p_{\perp}^{2} \equiv p_1^2 + p_2^2 \text{ and}$   
 $p_{\parallel}^2 \equiv p_0^2 - p_3^2,$   
therefore  $p^2 = p_{\parallel}^2 - p_{\perp}^2.$ 



## The amplitude for the process.

$$\begin{split} \widetilde{\mathcal{M}} &= -\int d^4 x d^4 y d^4 z \int \frac{d^4 r}{(2\pi)^4} \frac{d^4 s}{(2\pi)^4} \frac{d^4 t}{(2\pi)^4} \\ &\times e^{-it \cdot (y-x)} e^{-is \cdot (x-z)} e^{-ir \cdot (z-y)} e^{-ip \cdot z} e^{-ik \cdot y} e^{iq \cdot x} \\ &\times \left\{ \mathsf{Tr} \left[ iq_f \gamma_\alpha iS(s) ig \gamma_\mu t^c iS(r) ig \gamma_\nu t^d iS(t) \right] \\ &+ \mathsf{Tr} \left[ iq_f \gamma_\alpha iS(t) ig \gamma_\nu t^d iS(r) ig \gamma_\mu t^c iS(s) \right] \right\} \\ &\times \Phi(x, y) \Phi(y, z) \Phi(z, x) \epsilon^\mu (\lambda_p) \epsilon^\nu (\lambda_k) \epsilon^\alpha (\lambda_q) \end{split}$$

Three steps.

Compute:

- Product of Schwinger phase factors/integrals over the space-time points.
- Tensor structures.
- Integrals over the momenta.



| 03/10/20 M                       | 03 MI 20 PL 41 62 8, 07, 81                                                                                       |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Her ungeland er las u            | Jday e e                                                                                                          |
| B. T. IT. J. d'a d's' de         | = 17 (ET) & ((err), Szeri, 1)                                                                                     |
| C TES N. 62 X ( + 1/2 / 2 ) 0    | 1) 1 (de, (20) d( (200), - 938 G.J.) e                                                                            |
| ( 1. Fr [ S. S. F. Sw ( \$2+1/2) | 400 8 ( \$ -25; (by 1); )                                                                                         |
| + To F S. ( X ( 1 ) Y )          |                                                                                                                   |
| 6 23 6 23 6 31                   |                                                                                                                   |
|                                  | $= (2\pi) \left(\frac{2}{e_{\beta}\delta}\right)^{-1} \frac{\pi}{p_{1}} \frac{\pi}{c_{1}} e^{\frac{2\pi}{p_{1}}}$ |
| ·                                | Distant - a contraction of any fragment                                                                           |
| prece que vale le por a          | n (211) <sup>2</sup> (3) <sup>2</sup> 1 2 - 21 - 21 - 24 - 24 (271) (1411)                                        |
| afirtys, to time timb a clo      | Jan (18 151) 105 Tr 1                                                                                             |
| ( Sterie Con Con e               | e 95 e 50 e 50                                                                                                    |
| - Water (Si-to B)                |                                                                                                                   |







| (1) (03/10/2016 03/11/2072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 3/11/10/16  |                                 |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------------------------------|--------------------------------------------|
| her engols mer las - 2 (day e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |             | Bay Ma Day B- 03 Co To be       |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | an a = - e to (13-12-12         |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | (mys) (At ] | Set 67 (31-2146)                |                                            |
| Tel Side Verter Ver Jole (10) & (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fer en en |             |                                 |                                            |
| (arafs, 5, 5, 5, (\$2+1/2) 403 5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |             |                                 | TINDERNITY'S                               |
| $T_{\alpha}[I_{\alpha}]_{\alpha} = T_{\alpha} = T_{\alpha} \int dt_{\alpha} \left[ \frac{z(\alpha)}{c_{\alpha} \beta} \right] \mathcal{J}(I_{\alpha}) = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |             |                                 | 23.7. (2                                   |
| ene en en (21/2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                                 |                                            |
| and the second s |           |             | a to (riestel) Trans            |                                            |
| a para perile have a contal g-p-a) can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |                                 |                                            |
| 5 = G + (1)+2) - (21)(3) # 1 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |             |                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             | - In L to Tell & To Sa The Sa L | - and - (5' + 1'') and - [xa + (5' + +)] } |
| Marshille sarring case to e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |             |                                 |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |                                 |                                            |



| The applicable of the set of the  | 100000 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| and the second of the second o |        |
| the second of the second of the second of the second second the second s |        |
| The state of the s |        |
| The state of the first first the the state of the state o |        |
| Laster full the state of the st |        |
| A MARKATINE DE ALE MARKATINE THE ALE THE ALE ALE ALE ALE ALE ALE ALE ALE ALE AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90     |
| the second stranger and the se |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |
| a constant and a constant                                                                                                                                                                                                                                             | -      |
| press per which is press of a state of the s |        |
| All and a second a secon |        |
| The set of  |        |
| and the second s |        |



## Computing process



to be continued ...



Photon production probability.

$$\frac{1}{4}\sum_{\mathsf{pol}}|\widetilde{\mathcal{M}}|^2 = (2\pi)^4 \delta^{(4)} \left(q-k-p\right) \mathcal{V}\tau_s \frac{1}{4}\sum_{\mathsf{pol}}|\mathcal{M}|^2,$$

- Average over the initial gluons.
- $\mathcal{V}\tau_s$  is the space-time volume

Explicitly

$$\frac{1}{4}\sum_{\rm pol}|\mathcal{M}|^2 = \frac{q_f^2\alpha_{\rm em}\alpha_s^2}{(2\pi)\omega_q^2}\left(\omega_p^2 + 3\omega_k^2\right)q_\perp^2\exp\bigg\{-\frac{q_\perp^2}{q_fB\omega_q^2}\left[\omega_p^2 + \omega_k^2 - \omega_p\omega_k\right]\bigg\}.$$

We have already used that the produced photon needs to move in the original gluon's direction.

$$egin{array}{rcl} p^{\mu} &=& \omega_p(1,\hat{p}) = (\omega_p/\omega_q)\,q^{\mu}, \ k^{\mu} &=& \omega_k(1,\hat{k}) = (\omega_k/\omega_q)\,q^{\mu}. \end{array}$$



### Invariant photon momentum distribution.

$$\begin{split} \omega_q \frac{dN^{\text{mag}}}{d^3 q} &= \frac{\chi \mathcal{V} \Delta \tau_s}{2(2\pi)^3} \int \frac{d^3 p}{(2\pi)^3 2\omega_p} \int \frac{d^3 k}{(2\pi)^3 2\omega_k} n(\omega_p) n(\omega_k) \\ &\times (2\pi)^4 \delta^{(4)} \left(q-k-p\right) \frac{1}{4} \sum_{\text{pol},f} |\mathcal{M}|^2. \end{split}$$

High occupation gluon number

- Three flavours.
- $n(\omega)$ , distribution of gluons.
- *χ*, overlap region (semicentral collision).

$$n(\omega) = rac{\eta}{e^{\omega/\Lambda_s} - 1}.$$

- $\eta$  high gluon occupation factor.
- $\Lambda_s$  the saturation scale

We introduced a *flow velocity* factor, that is,  $\omega_{p,k} \to (p,k) \cdot u$ . With  $u^{\mu} = \gamma(1,\beta)$  and  $\gamma = 1/\sqrt{1-\beta^2}$ 



## Elliptic flow coefficient

The azimuthal distribution with respect to the reaction plane can be given in terms of a Fourier decomposition as

$$rac{dN^{ extsf{mag}}}{d\phi} = rac{N^{ extsf{mag}}}{2\pi} \left[ 1 + \sum_{i=1}^{\infty} 2 extsf{v}_n(\omega_q) \cos(n\phi) 
ight],$$

with total number of photons,  $N^{\text{mag}}$  is

$$\mathcal{N}^{ ext{mag}} = \int rac{d^3 q}{(2\pi)^3} rac{d \mathcal{N}^{ ext{mag}}}{d^3 q}$$

Elliptic flow coefficient

$$v_2(\omega_q) = rac{rac{dN^{
m mag}}{d\omega_q}(\omega_q) \ v_2^{
m mag}(\omega_q) + rac{dN^{
m direct}}{d\omega_q}(\omega_q) \ v_2^{
m direct}(\omega_q)}{rac{dN^{
m mag}}{d\omega_q}(\omega_q) + rac{dN^{
m direct}}{d\omega_q}(\omega_q)},$$



## $\gamma$ 's invariant momentum distribution



- α<sub>s</sub> = 0.3,
  Λ<sub>s</sub> = 2 GeV,
- η = 3,
- $\Delta au_s = 1.5$  fm,
- *R* = 7 fm,
- $\beta = 0.25$  and
- $\chi = 0.8$

Figure: Difference between PHENIX photon invariant momentum distribution [1] and direct (points) or direct minus prompt (zigzag) photons from [2]

A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 91, 064904 (2015).
 J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016).



# $\gamma$ 's invariant momentum distribution ( $\beta = 0$ )



Figure: Difference between PHENIX photon invariant momentum distribution [1] and direct (points) or direct minus prompt (zigzag) photons from [2]

A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 91, 064904 (2015).
 J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016).



## Coefficient v<sub>2</sub>



Figure: Harmonic coefficient  $v_2$ , using the direct photon result of [1] together with our calculation, also compared to PHENIX data [2]

J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016).
 A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 94, 064901 (2016).



## Coefficient $v_2$ ( $\beta = 0$ )



Figure: Harmonic coefficient  $v_2$ , using the direct photon result of [1] together with our calculation, also compared to PHENIX [2]

J.-F. Paquet, C. Shen, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016).
 A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 94, 064901 (2016).
 21 / 23



## Summary

- In a semi-central HICs, a magnetic field of a large intensity is produced.
- When *eB* is the most intense are also the scales associated to the production of a large number of small momentum gluons.
- *eB* provides the mechanism to allow that gluons fuse and convert into photons in excess over other well studied mechanisms.
- eB also provides an initial asymmetry for the development of an azimuthal anisotropy quantified in terms of a substantial  $v_2$  (particularly at low photon momenta).

## Thank you!!! Enjoy your stay in Tlaxcala!!!

