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Sound waves in hadronic matter  
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Content: 
 
 
(1) Introduction: log-periodic oscillations decorating  
                           quasi-power-like Tsallis distributions 
                             scale-invariance   complex power index?   
 
 
(2) Or, rather,   log-periodically oscillating scale parameter 
                             (temperature)? 
 
 
(3) If so, one is dealing with sound waves in hadronic matter 
                                               self-similarity. 
 
(4)  Possible experimental confirmation. 
 
 



  
(*) The large  transverse momentum distributions of particles observed in all 

LHC experiments exhibit a quasi-power-like behavior following the two-

parameter Tsallis distribution with a scale factor T and nonextensivity q.  
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(*) The large  transverse momentum distributions of particles observed in all LHC 
experiments exhibit a quasi-power-like behavior following the two-parameter Tsallis 
distribution with a scale factor T and nonextensivity q.  
 

(*) However, looking at the ratios of the measured cross-sections to their 

phenomenological power-like fits, R = f_{data}(p_T)/f _{fit}(p_T),  one 

discovers some log-periodic oscillations in R.  
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Tsallis distribution decorated with log-periodic oscillation (1) 



  
(*) The large  transverse momentum distributions of particles observed in all LHC 
experiments exhibit a quasi-power-like behavior following the two-parameter Tsallis 
distribution with a scale factor T and nonextensivity q.  
 
(*) However, looking at the ratios of the measured cross-sections to their phenomenological 
power-like fits, R = f_{data}(p_T)/f _{fit}(p_T),  one discovers some log-periodic oscillations 
in R.  
 

(*) This is a rather subtle effect, but it shows itself in all experiments, at  

all energies (provided that the range of transverse momenta observed is large 

enough) and also in reactions with nuclei where they grow with increasing 

centrality of the collision, it cannot be erased by any reasonable change of 

fitting parameters – in what follows we shall assume it to be real. 
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Differens (1) Different experiments          
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Differens (1) Different energies 
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(1) Different collision systems   

Ratio of the values of b/a parameters in R(E) as a function  
of number of collisions per participant nucleon, Ncoll/Npart. 



  
(*) The large  transverse momentum distributions of particles observed in all LHC 
experiments exhibit a quasi-power-like behavior following the two-parameter Tsallis 
distribution with a scale factor T and nonextensivity q.  
 
(*) However, looking at the ratios of the measured cross-sections to their phenomenological 
power-like fits, R = f_{data}(p_T)/f _{fit}(p_T),  one discovers some log-periodic oscillations 
in R.  
 
(*) This is a rather subtle effect, but it shows itself in all experiments, at all energies 
(provided that the range of transverse momenta observed is large enough), in reactions with 
nuclei where they grow with increasing centrality of the collision, it cannot be erased by any 
reasonable change of fitting parameters – in what follows we shall assume it to be real. 
 
 

(*) In fact, such oscillations are seen in all branches of physics whenever one 

deals with power-like distributions. They are usually attributed to a discrete 

scale invariance (connected with a possible fractal structure of the process 

under consideration) and are described by introducing a complex power index. 
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if for some function O(x), one finds that  
 

O(λx) =μO(x)  
 
then it is scale invariant and its form follows a simple power law, 
 

                                                      O(x) = Cx-m                     with    m = -ln μ/ ln λ  
 
 

This relation can be written as     
 μλm  = 1 =   kie π2

where k is an arbitrary integer. It means therefore that, in general, 
 

m = −ln μ/ ln λ + i2πk/ ln λ,  
 
i.e., it is a complex number, the imaginary part of which signals a hierarchy of scales 
leading to  
                                             Log-periodic oscillations  
                              

Scale invariance 
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Alternative  - Two-component model ?  
21
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ALICE 
Pb+Pb at 2.76 TeV, c=0-5% 

G.G.Barnafoldi et al., JPCS612(2015)012048 
A „soft+hard” model…”  
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(*)  However, one can also describe these oscillations  by allowing for some 

specific log-periodic oscillations of the scale parameter T (both approaches  

are numerically equivalent).  
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log-periodic scale parameter T 

0.1 1 10 100
0.120

0.125

0.130

0.135

0.140

0.145

0.150

0.155

T 
[G

eV
]

pT [GeV]

 s1/2= 0.9 TeV
 s1/2= 7.0 TeV

Stochastic equation for the temperature evolution in 
Langevin formulation with energy dependent  noise  ),( Etξ

leads to 

which for the noise 

(and relaxation time  const=τ
is just an equation for the damping harmonic oscillator  
and has a solution  

We could equivalently assume the energy independent 
noise, )(),( 0 tEt ξξ =

but allow for the energy dependent relaxation time  

)  
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(*)  However, one can also describe them by allowing for some specific log-periodic oscillations 
of the scale parameter T (both approaches  are numerically equivalent).  
 

(*) We shall argue that this could be connected with the propagation of some 

sound waves in hadronic matter. 
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(*)  However, one can also describe them by allowing for some specific log-periodic oscillations 
of the scale parameter T (both approaches  are numerically equivalent).  
 
(*) We shall argue that this could be connected with the propagation of sound waves in 

hadronic matter. 

In particular: 

- The Fourier transform of the log-periodically oscillating T 

 

 

    represents some log-periodic acoustic wave forming in the source.  

- The corresponding wave equation has self-similar solutions of the second 

kind connected with the so called intermediate asymptotic (observed in 

phenomena which do not depend on the initial conditions because sufficient 

time has already passed, although the system considered is still out of 

equilibrium).  
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(*)  However, one can also describe them by allowing for some specific log-periodic oscillations 
of the scale parameter T (both approaches  are numerically equivalent).  
 
(*) We shall argue that this could be connected with the propagation of sound waves in 

hadronic matter. 

In particular:  

- The Fourier transform of the log-periodically oscillating T 

 

    represents some log-periodic acoustic wave forming in the source.  

- The corresponding wave equation has self-similar solutions of the second kind connected 

with the so called intermediate asymptotic (observed in phenomena which do not depend on 

the initial conditions because sufficient time has already passed, although the system 

considered is still out of equilibrium) . 

 

 Both in p+p and Pb+Pb one deals with an inhomogeneous medium with the density and  

   the velocity of sound both depending on the position  in the way which seems to be  

   supported by experimental results.  
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Temperature oscillations and sound waves in hadronic matter (3) 

------  T(r)=0.005/r ------  T(r)=5.1sin(2π)/3.2ln(1.24r) 



          Comparison of different collision systems:   
 
                                                           
 
 
                                                            p-p and  Pb-Pb  
                                                             
                                                   (most   (most central) 
                                                         
                                                             collisions                                
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(3) Temperature oscillations and sound waves in hadronic matter 

where    K=K(r)=ω/c(r) 
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(3) Self similar solution 
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Remarks:   Correspondence between scale invariance and self similarity (3) 

sin[αξ] 
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(4) Consequences  (1) 

(*) The space picture of the collision (in the  plain  

perpendicular to the collision axis and  located at  

the collision point) presented  shows  the existence  

of some regular (on the  logarithmic scale) structure  

for small distances. 

  

(*) It starts to weaken quite early (at r ∼ 0.1 fm) and essentially disappears when r reaches 

the dimension of the nucleon, i.e., for r ∼ 1 fm. 

 

(*) For central Pb + Pb collisions we observe ∼3.6 times bigger amplitude and ∼1.15 longer 

period of oscillations. With decreasing centrality the amplitude decreases smoothly 

reaching practically the same value as for p + p collisions .  With the parameters used we 

have, in the region of regular oscillations, that 
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(4) Consequences  (2) 

(*)  Longer period of oscillations  in  Pb + Pb  

      collisions  means a smaller value  of the  

       parameter   α in  

 

      in p + p collisions.  

 

(*)  Because ω/c(r) = α/r   the velocity of sound  c(r) = (ω/α)r 
       velocity of sound  in the nuclear environment (Pb + Pb)  is greater  

             than in p + p.  

 

(*) This, in turn, means that the refractive index n(r) = c0 /c(r) at position r in 

      nuclear collisions is smaller than in collisions of protons.  

 

(*)  In both cases we encounter an inhomogeneous medium with  r-dependent c(r)  

       and n(r). 
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(4) Confrontation with experimental observations (1) 

(*) In nuclear collisions one observes a higher speed of sound  cs
2    (used as 

a parameter in the   equation of state of hadronic matter described by a   

hydrodynamical model) 

                                                                 

 

                                                                                                

                                                                         Compilation of the energy  

                                                                         dependence  of  sound velocities 

                                                                          cs
2  obtained from  the widths  

                                                                          of π− rapidity   spectra   

                                                                          [ PoS DIS2014(2014) 018] 
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(4) Confrontation with experimental observations (2) 

(*)  This  should  be expected.   

Consider the connection of the isothermal compressibility of the nuclear matter  

 

 

and fluctuations of the multiplicity of produced secondaries represented by the 

relative variance, ϖ , of the multiplicity fluctuations   ( ρ 0 = ⟨N⟩/V denotes the 

equilibrium density for N particles with mass m located in volume V ). 

  
 

This allows the velocity of sound to be expressed by fluctuations of multiplicity 

because one has : 

 

 

Note:  higher velocity of sound corresponds to lower fluctuations of multiplicity.  
                                                                                        

 

 

 

 



(4) Confrontation with experimental observations (3) 

Higher velocity of sound corresponds to lower fluctuations of multiplicity, 
this seems to be observed: 

Fluctuations (omega)  decreases with number of wounded 

nucleons. 
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Confrontation with experimental observations (4) (4) 

Scaled variance of the multiplicity distribution of 
negatively charged hadrons, ω,  as a function of the 
mean number of wounded nucleons <W>. Results for 
inelastic p+p (NA61/SHINE) interactions (filled circles) 
and the 1% most central Pb+Pb (NA49 [6]) collisions 
(squares). 
 
Fluctuations (represented by ω) decreases with 
number of wounded nucleons. 

This  agrees also with the recently obtained values        𝝎𝝎�𝒑𝒑+𝒑𝒑
𝝎𝝎�𝑷𝑷𝑷𝑷+𝑷𝑷𝑷𝑷

≅ 𝟏𝟏.𝟐𝟐𝟐𝟐 ± 𝟎𝟎.𝟎𝟎𝟎𝟎  
[ Eur. Phys. J. C  76 (2016) 635 ] 

J. Phys. Conf. Ser. 5 (2005) 23  for central nuclear collisions the number of 
binary collisions exceeds that of wounded nucleons and correlation function 
becoming negative which means  smaller  fluctuations of multiplicity. 

These results can be connected with the pair correlation function, g(2), because 
the scaled variance can be written as  
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Confrontation with experimental observations (5) 

(*) In nuclear collisions  participate   Npart    nucleons  (wounded nucleons) experiencing  Ncoll  

binary NN collisions. In Glauber picture :  Ncoll  ~ (Npart)4/3  . 

 

(*) Incompresability  is proportional to the energy density:  

    (1/κ ) ~ ε =Npart ε0 + ( Ncoll  -  Npart )ε1           

 [ ε0 - energy produced by participating    nucleons ,   ε1  -energy produced in. the  remaining 

binary collisions;   note that, approximately, nucleon interacts many times and  in first 

interaction it releases energy ε0, in each additional collision energy ε1  (on the average) ] 

 

(*)  Incompresability of nuclear matter exceed incompresability of hadronic matter and sound 

speed ratio is given by 

 

                             

(*) For central Pb+Pb ccollisions    (with Npart  ≅ 𝟐𝟐𝟐𝟐𝟐𝟐,  [cPbP /cpp ]2 ~1.3  and  

      Ncoll /Npart ~[Npart ]1/3  )       we estimate that                                                                                                            

(4) 



Concluding Remarks - 1 

(*)  Transverse momentum distributions are characterized by a quasi-power law  

     (Tsallis distribution) decorated with log-periodic oscillations. 

     

(*) This means that either:  the system and/or the underlying physical  

     mechanisms have characteristic scale invariance behavior. The discrete  

     scale invariance and its associated complex exponents can appear 

     spontaneously, without a pre-existing hierarchical structure. 

 

(*) Or that:  we observe a sound wave in hadronic matter (resulting in the  

     temperature oscillations)  which has self similar solution (in log-periodic  

     form). 

 

(*)  This, in turn, can have some interesting experimental consequences. 
33 



Concluding Remarks - 2 
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Further reading (GW&ZW):    Physica A 413 (2014) 53 ;                     

                                                Entropy 17 (2015) 384;  

                                                 Chaos,Sol.& Frac., 81 (2015) 487 ;       

                                                  Physica A 486 (2017) 579. 

 

Also: D.A. Fogaça et al. Nucl. Phys. A 819 (2009) 150 [Sound waves and solitons in hot 

          and dense nuclear matter];  

          G.I. Barenblatt and Ya.B. Zeldovich, Ann. Rev. Fluid Mech. 4 (1972) 285  [Self- 

          Similar Solutions as Intermediate Asymptotics];      

          D.Sornette, Phys. Rep. 297 (1998)239 [Discrete-scale invariance and complex  

           dimensions] 



Thank you for your attention  
and I look forward to your comments and questions 

Gracias por su atención  
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