Muon bundles from the Universe*

Maciej Rybczyński
Institute of Physics, Jan Kochanowski University, Kielce, Poland

Cosmic rays (CR) are particles coming from the Galaxy or outside the Galaxy reaching the Earth’s atmosphere.

- 90% protons, 9% He nuclei, 1% heavier nuclei
- Gammas, neutrinos
- Rate ~1000 particles hits the atmosphere per m²s

CR are characterized by:
- Identity of the particle
- Energy (10^9 – 10^{20} eV)
- All arrival directions
Cosmic ray physics with CERN experiments

- Small detectors with respect to EAS experiments
- Low underground
- Detection of muons (only!) crossing the rock
- Short time of data taking

These detectors are not designed to cosmic ray physics!

Advantages:
- Detectors with very high performance
- Presence of magnetic field
Detection of CR by CERN LEP experiments

✧ **ALEPH**: 130 m of rock, momentum muon threshold $p > 70/\cos \theta$
 ✓ underground scintillators, HCAL (horizontal area $\sim 50 \text{ m}^2$),
 TPC projected area $\sim 16 \text{ m}^2$

✧ **DELPHI**: 100 m of rock, momentum muon threshold $p > 52/\cos \theta$
 ✓ Hadron calorimeter (horizontal area $\sim 75 \text{ m}^2$),
 muon barrel, TPC, ToF and outer detectors

✧ **L3+C**: 30 m of rock, momentum muon threshold $p > 20/\cos \theta +$ surface array
 ✓ Scintillator surface array (200 m²),
 trigger, muon barrel (100 m²), hadron calorimeter, etc.

COSMIC RAY ENERGY COVERAGE FROM 10^{14} – 10^{18} eV
These muon bundles are not well described (more than an order of magnitude above the simulation).

Data indicates that heavier component is needed to explain higher multiplicity muon bundles.

Even the combination of extreme assumptions of highest measured flux value and pure iron spectrum, fails to describe the abundance of high multiplicity events.

The conclusions of DELPHI and L3+C are similar to ALEPH.

The only LEP result not consistent with the standard hadronic interaction models was the observation of the 'anomalous' number of high multiplicity muon bundles.
Detection of CR by the LHC ALICE experiment

ALICE is located 40 m underground
✓ 30 m of rock (molasse)
✓ 10 m of air
Recently the ALICE experiment has been used to perform studies that are of relevance to astro-particle physics.

ALICE experiment registered the presence of large groups of muons produced in EAS by cosmic ray interactions in the upper atmosphere.

$0^\circ < \theta < 50^\circ$

$E_\mu > 16 \text{ GeV}/\cos\theta$

Total time of data taking: 30.8 days
Anisotropy of arrival directions

Five high-multiplicity muon events in the equatorial reference frame \((\alpha, \delta)\). Most known extragalactic TeV Sources (blazars, SNRs, radio galaxies) in the sky [Horan and Weekes, New Astr. Rev. 48 (2004) 527], [Turley et al., arXiv:1608.08983] are also shown (note that the Mrk 421 blazar is the source located very close to the centroid of the five considered events).
Anisotropy of arrival directions

Five high-multiplicity muon events. All events are located close to the galactic pole (far from the galactic plane). Background: Inverted (negative) image of the Fermi telescope mosaic. The minimum declination limit (due to the restricted zenith angle in the experiment) is marked by a horizontal line. The area in the southern sky not covered by the experiment is marked by a rectangle (filled).
Anisotropy of arrival directions

The possible source of high multiplicity muon groups
Strange quark matter (SQM) composed of up, down and strange quarks may be metastable or even stable in bulk.

States have a reduced Fermi energy, reduced Coulomb, no fission. Thus SQM states could range in size from $A=2$ to $A > 10^6$.

Witten [PRD 30 (1984) 272] proposed that SQM could even be the ground state of nuclear matter and could exist in bulk as remnants of the Big Bang.

The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty.

There is additional stability from reduced Coulomb repulsion. SQM is expected to have low Z/A.

What is strange quark matter?

- **Quark Matter**
 - The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty.

- **Strange Quark Matter**
 - There is additional stability from reduced Coulomb repulsion. SQM is expected to have low Z/A.
Strange quark matter

Ground state of nuclear matter?

Stability can not be calculated in QCD, but is addressed in phenomenological models (MIT Bag Model, Color Flavor Locking...).

For a large part (~half) of available parameter space, these models predict that SQM is absolutely stable in bulk

J. Madsen, PRL 87 (2001) 172003

Values of Bag Constant

Stable SQM
Strange quark matter

Roughly equal numbers of u, d, s quarks in a single ‘bag’ of cold hadronic matter.

Bag model results with varying strange quark mass values

SQM is less stable for lower baryon number (A < ~1000)

Strange quark matter

Roughly equal numbers of u, d, s quarks in a single ‘bag’ of cold hadronic matter.

Strange Quark Matter have low Z/A
Strange quark matter

Roughly equal numbers of u, d, s quarks in a single ‘bag’ of cold hadronic matter.

Nucleus (^{12}C)
- $Z=6, \ A=12$
- $Z/A = 0.5$

Strangelet*
- $A=12$ (36 quarks)
- $Z/A = 0.083$

*small lump of Strange Quark Matter
Strange stars

Witten, PRD 30 (1984) 272
Haensel et al., A&A 160 (1986) 121
Strange stars: a curiosity

Strange stars may be much smaller than neutron stars.
CHART OF NUCLIDES shows all known forms of stable matter.
Between the heaviest atomic elements and neutron stars,
which are giant nuclei, lies a vast, unpopulated nuclear desert.
This void may actually be filled with strange quark matter.
High multiplicity muon bundles from strange quark matter

Integral multiplicity distribution of muons for the ALICE data (circles) published in JCAP 01 (2016) 032. Monte Carlo simulations for primary protons (dotted line); iron nuclei (dashed dot line) and primary strangelets with mass A taken from the $A^{-7.5}$ distribution (full line) with abundance of the order of $2 \cdot 10^{-5}$ of the total primary flux.
High multiplicity muon bundles from strange quark matter

Integral multiplicity distribution of muons the ALEPH data (circles) published in Astr. Phys. 19 (2003) 513. Monte Carlo simulations for primary protons (dotted line); iron nuclei (dashed dot line) and primary strangelets with mass A taken from the $A^{-7.5}$ distribution (full line) with abundance of the order of $2 \cdot 10^{-5}$ of the total primary flux.
How to distinguish different primaries in ALICE?

Muons from events with $N_\mu > 100$
Conclusions

✓ Accelerator apparatus can be suitable for cosmic-ray physics.

✓ The measured by the CERN ALICE experiment low multiplicities of muon groups favor light nuclei as primaries, medium multiplicities show tend to heavier primaries.

✓ At high multiplicities of muon groups the common interaction models fail to describe muon bundles.

✓ A relatively small (of the order of 10^{-5} of total primary flux) admixture of SQM of the same total energy allows to reproduce the high muon multiplicity groups.

✓ The arrival directions of the observed high muon multiplicity groups suggest their extragalactic origin
Additional slides
Abundances of elements in the Universe

\[
\log_{10} \text{flux [arbitrary]} \quad \log_{10} A_0
\]

- strangelets
- nuclei:
- Cosmic rays
- Sun’s atmosphere
- Solar - system
- Earth’s core

fit: \(A_0^{-7.5} \)
Cosmic ray energy spectrum
Cosmic ray energy spectrum

Direct measurements (balloons, satellities) up to $E \sim 10^{14}$ eV → Primary particles
Cosmic ray energy spectrum

Direct measurements (balloons, satellities) up to $E \sim 10^{14}$ eV → Primary particles

Indirect measurements ([under]ground experiments) $E > 10^{14}$ eV → Secondary particles
The Mrk 421 blazar

Blazars are a subgroup of a very bright active galaxies (called Active Galactic Nuclei, AGN). Radiation emitted by blazars extends across the entire range of the electromagnetic spectrum, from radio frequency up to high-energy gamma radiation.

Specifically, to be classified as a blazar an AGN must be observed with one of the following properties:

✓ high radio-brightness accompanied by flatness of the radio spectrum
✓ high optical polarization,
✓ strong optical variability on very short timescales (less than few days).

Markarian 421 (Mrk 421) is located in the constellation Ursa Major at redshift $z = 0.03$ (roughly equivalent to 115 Mpc or 370 million light-years). It is one of the brightest objects in its class, thus often monitored by different instruments.
Detection of CR by the LHC ALICE experiment

ALICE configuration for cosmic ray physics:

- ✔ Cylindrical multi-gap resistive-plate chamber array
- ✔ TOF covers a cylindrical surface of polar acceptance in the theta range $45 \leq \Theta \leq 135$
- ✔ Modular structure: 18 sectors in azimuthal angle
- ✔ Time resolution less than 100 ps
- ✔ Efficiency around 95%
Propagation of strange quark matter in the atmosphere

All quarks from the air nucleus target of mass number A_t which are located in the geometrical intersection of the two colliding projectiles are involved and each quark from the target interacts with only one quark from strangelet.

During the interaction up to $3A_t$ quarks from the strangelet could be used up and its mass could drop to a value of $A - A_t$, at most, for $A \geq A_{crit} \approx 320$.

The total penetration length of strangelet:

$$\Lambda = \frac{1}{3} \lambda_{NA_t} \left(\frac{A_0}{A_t} \right)^{1/3} \left(1 - \frac{A_{crit}}{A_0} \right)^2 \left(4 - \frac{A_{crit}}{A_0} \right)$$

ALICE result: highest multiplicity reconstructed

Event with 276 atmospheric muons
Anisotropy of Arrival Directions

<table>
<thead>
<tr>
<th>Event</th>
<th>N_μ</th>
<th>Φ [$^\circ$]</th>
<th>θ [$^\circ$]</th>
<th>Date (JD)</th>
<th>Az [$^\circ$]</th>
<th>h [$^\circ$]</th>
<th>α_{2000}</th>
<th>δ_{2000}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>181</td>
<td>212.4</td>
<td>40.4</td>
<td>2455247.53666</td>
<td>268.5</td>
<td>49.6</td>
<td>7 h 54 m</td>
<td>32° 36′</td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>170.2</td>
<td>16.6</td>
<td>2455256.64166</td>
<td>226.3</td>
<td>73.4</td>
<td>13 h 25 m</td>
<td>33° 49′</td>
</tr>
<tr>
<td>3</td>
<td>276</td>
<td>192.9</td>
<td>26.0</td>
<td>2455708.26792</td>
<td>249.0</td>
<td>64.0</td>
<td>9 h 08 m</td>
<td>32° 45′</td>
</tr>
<tr>
<td>4</td>
<td>225</td>
<td>235.7</td>
<td>23.5</td>
<td>2456044.54870</td>
<td>291.8</td>
<td>66.5</td>
<td>13 h 35 m</td>
<td>49° 57′</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
<td>264.8</td>
<td>2.6</td>
<td>2456052.38119</td>
<td>320.9</td>
<td>87.4</td>
<td>12 h 14 m</td>
<td>48° 18′</td>
</tr>
</tbody>
</table>
Layout of Point 2 at underground level.
Zenith vs Azimuth angle distribution of the muons in ALICE with superimposed the location of the five high muon multiplicity events (white circle on a black square).