

## Probing small systems with heavy quarks with ALICE at the LHC

Henrique Zanoli for the ALICE Collaboration University of São Paulo (Brazil) and Utrecht University (The Netherlands)







#### Outline

- Why study small systems with heavy quarks? •
- Physical observables
- ALICE detector
- Results •
  - D-meson production as function of multiplicity •
  - D mesons in Jets
  - D mesons hadron correlations
  - Heavy-flavour electron hadron correlations •
- Conclusion





## Why study small systems with heavy quarks?

Baseline for Pb-Pb collisions

b and c quarks: ideal • probes to study the QGP formed in Pb-Pb collisions

Constrain Cold Nuclear Matter (CNM) effects

- Shadowing or gluon saturation
- Parton transverse momentum broadening and cold nuclear matter parton energy loss

#### Additional information accessed with correlations and jets

Jet production (and suppression) and jet properties

b/c

Collision

- Heavy-quark fragmentation in different collision systems
- Heavy-quarks production mechanism
- Elliptic flow and collective-like effects?







# Physical observables

Nuclear modification factor of • fully reconstructed D mesons and of leptons from heavy-flavour decays

Modification in p-Pb with respect to pp collisions

Compare the production as function of multiplicity

$$R_{pPb} = \frac{1}{A} \frac{\mathrm{d}^2 \sigma_{pPb} / \mathrm{d}p_{\mathrm{T}} \mathrm{d}y}{\mathrm{d}^2 \sigma_{pp} / \mathrm{d}p_{\mathrm{T}} \mathrm{d}y}$$





### Physical observables

#### Heavy-flavour jets : charged jets tagged by fully reconstructed D mesons

Access to heavy-quark fragmentation

Henrique Zanoli

#### 15 September 2017





\_\_\_\_\_



### Physical observables

 Two-particle correlations of particles from c/b quarks (heavyflavour electrons or D mesons) with charged particles

Sensitive to the recoil jet

Away side

b/c

B/D

Measurements as function of  $p_T^{trigger}$  and  $p_T^{assoc}$ 

Henrique Zanoli

#### 15 September 2017



#### ALICE detector





#### D-meson reconstruction

ALICE can identify D mesons using fully • reconstructed hadronic decay

| meson                | <i>М</i> (GeV/ <i>с</i> ²) | <i>C</i> τ (μm) | decay                                           | BR   |
|----------------------|----------------------------|-----------------|-------------------------------------------------|------|
| D⁰ (cū)              | 1.865                      | 123             | K⁻π⁺                                            | 3    |
| D+ (cd)              | 1.870                      | 312             | K⁻π⁺π⁺                                          | 9    |
| D*+ (cd)             | 2.010                      | Γ = 83.3 KeV    | D⁰(K⁻π⁺)π⁺                                      | 67.7 |
| D+ <sub>s</sub> (cs) | 1.968                      | 150             | Φ(K <sup>-</sup> K <sup>+</sup> )π <sup>+</sup> | 2    |

- The signal is extracted from invariant-mass • distributions
  - Secondary vertices are few hundred  $\mu$ m displaced with • respect to the primary vertex
  - Topological selections and PID are performed in order to • reduce background









#### D-meson production as function of centrality



![](_page_8_Figure_3.jpeg)

 $D^{O}Q_{pPb}$  agrees with charge-particles  $Q_{pPb}$ 

Slightly different centrality ranges

Hint of  $Q_{CP}$  >1 in 3-8 GeV/c with 1.7 $\sigma$ 

- Is it an Initial or a final state effect?
- Possible influence of radial flow on heavyflavour hadrons in p-Pb collisions

![](_page_8_Picture_17.jpeg)

### D mesons in jets

- Charged jets reconstructed with FastJet (anti-k<sub>T</sub>)
- D meson required to be one of the jet • constituents
- Down to jet  $p_T = 5 \text{ GeV}/c$ •
- Data is reproduced by • POWHEG+PYTHIA 6 within uncertainties

![](_page_9_Figure_8.jpeg)

![](_page_9_Picture_10.jpeg)

### D meson - hadron correlations: method

![](_page_10_Figure_2.jpeg)

Sideband region correlation is normalized to the background contribution under the signal. Then they are subtracted from signal region + background **contribution** correlations

Henrique Zanoli

- Event mixing (limited acceptance and inhomogeneity effects)
- Corrected by reconstruction efficiency (D and hadron)
- B → D feed down subtracted using fit templates

![](_page_10_Picture_9.jpeg)

# \_\_\_\_\_

# )

#### D mesons - hadron correlations in p-Pb

- Results in different D meson • (trigger) and hadron (associate)  $p_{T}$ ranges
- New p-Pb data sample offers • better precision when compared to Run 1( $\sim$  6x more statistics).
  - Higher  $p_T^{D}$  and  $p_T^{assoc}$ accessible
  - First quantitative access to away side
- The correlation function of D-h in p-Pb collisions is described by PYTHIA tunes and POWHEG + PYTHIA within uncertainties

 $\sim$ 

assoc

 $\bigcirc$ 

 $\bigcirc$ 

 $\sim$ 

 $\Box$ 

assoc

Q

V

 $\mathbb{O}$ 

seline (rad<sup>-1</sup>)

dΩb dΔp

eline (rad<sup>-1</sup>)

dΔφ dΔφ

(rad<sup>-</sup>

9

dN<sup>at</sup> d∆

-S

![](_page_11_Figure_11.jpeg)

**ALI-PREL-133691** 

#### D mesons - hadron correlations: Near side yields

- Near side yields (obtained using gaussian fits) described by models within uncertainties.
- Similar trend with angular distributions and momentum ordering of NS associated particles in data and simulations.

![](_page_12_Figure_4.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

## Heavy-flavour electron identification

 Heavy-flavour hadrons (B and D) semileptonic decays channels (B.R. ~10%)

![](_page_13_Picture_3.jpeg)

- Electrons are identified using the • energy loss in the TPC and Time Of Flight (TOF)
- Electrons from the other main sources are subtracted

![](_page_13_Figure_8.jpeg)

![](_page_13_Figure_9.jpeg)

![](_page_13_Picture_11.jpeg)

## Non heavy-flavour electrons subtraction

one

![](_page_14_Figure_3.jpeg)

![](_page_14_Picture_7.jpeg)

## HFe - hadron correlations in p-Pb as function of multiplicity

• in the heavy-flavor sector in p-Pb collisions.

![](_page_15_Figure_3.jpeg)

# Looking for multiplicity dependence and possible double-ridge effect (v<sub>2</sub> like)

Near and Away side modification from Low Multiplicity to High Multiplicity

![](_page_15_Figure_9.jpeg)

![](_page_15_Picture_19.jpeg)

## HFe - hadron correlations in p-Pb as function of multiplicity

• modified from low to high multiplicity collisions

![](_page_16_Figure_3.jpeg)

#### Henrique Zanoli

High multiplicity correlation functions are subtracted by the low multiplicity ones to remove the jet component. Assumption: jet correlation function is not

![](_page_16_Picture_7.jpeg)

# v<sub>2</sub><sup>HFe</sup> {2PC, sub} in p-Pb

- First measurement of heavy-flavour electron  $v_2^{HFe}$  {2PC, sub} in p-Pb collisions
- Effect is qualitatively similar to the one observed in the light flavor sector
- Results show a positive  $v_2^{HFe}$  (2PC,sub) for electrons with  $1.5 < p_T < 4$  GeV/c
- Significance of  $3.7\sigma$  for  $1.5 < p_T < 2$  GeV/c and  $4.3\sigma$  for  $2 < p_T < 4$  GeV/c

![](_page_17_Figure_8.jpeg)

#### Conclusions

- Q<sub>pPb</sub>.
- down to 5 GeV/c. The results are compatible with POWHEG+PYTHIA 6.
- D meson charged particles correlations: new and more precise measurements compared to Run 1. Near side and away side yields are qualitatively described by PYTHIA and POWHEG+PYTHIA expectation
- Evidence of positive v<sub>2</sub><sup>HFe</sup> in high-multiplicity p-Pb collisions from the charged particles

• D-meson production:  $D^0 Q_{CP}$  shows a hint of enhancement and the  $D^0 Q_{pPb}$  in different centrality bins is in qualitative agreement with the charged particle

D-meson in jets: measurements of jets that contain a D-meson cross section

analysis of azimuthal correlations of heavy-flavour decay electrons with

![](_page_18_Picture_12.jpeg)

# Thank you!

#### Acknowledgement

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

Netherlands Organisation for Scientific Research

Henrique Zanoli

## Backup

![](_page_20_Picture_9.jpeg)

#### D-meson reconstruction

![](_page_21_Figure_2.jpeg)

#### Henrique Zanoli

![](_page_21_Picture_6.jpeg)

D-meson R<sub>pPb</sub>

![](_page_22_Figure_2.jpeg)

ALI-PREL-131944

![](_page_22_Figure_6.jpeg)

![](_page_22_Picture_7.jpeg)

# D-h away side

![](_page_23_Figure_2.jpeg)

#### Henrique Zanoli

![](_page_23_Figure_5.jpeg)

## D-h near side

![](_page_24_Figure_2.jpeg)

Henrique Zanoli