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Abstract. An asymptotic solution to the QCD parton branching equation is derived using
the method of Laplace transformation and saddle point approximation. The distribution is
applied to charged particle multiplicity distributions in proton-proton collisions at

√
s =

0.9, 2.36, and 7 TeV for |η| < 0.5, 1.0, 1.5, 2.0, 2.4, and 8 TeV for |η| < 0.5, 1.0, 1.5, as
well as 13 TeV data for |η| < 0.8 and 2.5.

1 Introduction

The charged particle multiplicity distribution is a global observable of the final state of high energy
collisions. The shape of the distribution offers information on the dynamics of particle production
processes as well as any correlation in particle production. Photon counting distributions in optical
experiment and theory has shown that the independent production of photons lead to a Poisson dis-
tributed counting distribution. In the context of high energy proton-proton (pp) and electron-positron
(e+e−) collisions, the charged-particle multiplicity distributions are most often described using the
Negative Binomial Distribution (NBD) [1] and even the double NBD [2]. The NBD describes cas-
cades (or showers) of particles originating from an initial number of ancestor particles produced after
the collision [3].

The total multiplicity distribution of partons within a jet [4] can be expressed as Markov branching
processes of quarks (q) and gluons (g) [5]. Considering the processes g→ g+g, q→ q+g, g→ q+q,
and g→ g+g+g with average branching probabilities of A, Ã, B, and C respectively, the QCD parton
branching differential equation for producing m quarks and n gluons after branching [6–8] is given as:

∂Pm,n (t)
∂t

= − ÃmPm,n (t) + ÃmPm,n−1 (t) (1)

− AnPm,n (t) + A (n − 1) Pm,n−1 (t)

− BnPm,n (t) + B (n + 1) Pm,n+1 (t)

−CnPm,n (t) + C (n − 2) Pm,n−2 (t) ,

where

t =
6

11Nc − 2N f
ln

 ln
(
Q2/µ2

)
ln

(
Q2

0/µ
2
)  (2)
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and Q is the initial parton invariant mass, Q0 is the hadronisation mass, µ is a QCD mass scale of a
few GeV, Nc is the number of colours, and N f is the number of flavours.

The above equation yields the Generalised Multiplicity Distribution (GMD) [6–8] as a possible
exact solution in the case where B = C = 0. Given an initial m and k′ number of quarks (q) and gluons
(g), the probability of obtaining n final state particles is given by the GMD:

PGMD(n; p, k, k′) =
Γ (n + k)

Γ (n − k′ + 1) Γ (k′ + k)
(1 − p)n−k′ (p)k′+k , (3)

where k = mÃ/A, p = exp(−At) = (k′ + k) / (n + k), and n is the average number of observed final
state particles. Special cases of the GMD are the NBD when k′ = 0, and Fury-Yule Distribution [9]
when k = 0. Furthermore, the NBD converges to the PD for k → ∞.

However, an exact solution including all the processes in equation 1 has never been derived. In this
paper, an asymptotic solution is obtained using the method of Laplace transformation and the saddle
point approximation. The result corrects an error by A. H. Chan and C. K. Chew [10] in the use of the
Stirling’s formula. The resulting asymptotic multiplicity distribution is then applied to measurements
of charged particle multiplicity distributions in pp collisions by the ALICE [11], ATLAS [12], and
CMS [13] collaborations at the LHC.

2 Asymptotic solution of the QCD parton branching equation

Using a continuous-variable approximation, where n is replaced by x ∈ R and performing a Laplace
transform with initial condition , equation 1 becomes

−P (x, t = 0) + sP∗ (x, s) = − A†P∗ (x, s) + A†P∗ (x − 1, s) (4)
− AxP∗ (x, s) + A (x − 1) P∗ (x − 1, s)

− BxP∗ (x, s) + B (x + 1) P∗ (x + 1, s)

−CxP∗ (x, s) + C (x − 2) P∗ (x − 2, s) ,

with A† = Ãm.
When x > k′, the initial condition ensures that P(x > k′, t = 0) = 0. In the case where x = k′,

−P
(
x = k′, t = 0

)
+ sP∗

(
k′, s

)
= −

(
Ak′ + A† + Bk′ + Ck′

)
P∗

(
k′, s

)
, (5)

P∗
(
k′, s

)
=

1
s + A† + (A + B + C)k′

. (6)

To further simplify equation 4 when x > k′, let ln(P∗ (x, s)) = L(x) and approximate L(x+1) ∼ L(x)
and L(x − 2) ∼ L(x − 1) as we expect large number of gluons to be created at high energies. Equation
4 then becomes

seL(x) = − (Ax + A† + Bx + Cx)eL(x) (7)

+ A(x − 1)eL(x)−L′(x) + A†eL(x)−L′(x)

+ B(x + 1)eL(x) + C(x − 2)eL(x)−L′(x),

where a Taylor expansion has been made for all the L(x−1) terms about L(x) up to the first differential
coefficient.



Rearranging, the equation

−
∂L(x)
∂x

= ln
[

s + A† − B + (A + C)x
(A + C)x − A + A† − 2C

]
(8)

can be obtained.
To simplify the analysis, let

α = A† − B, (9)
β = A + C,

γ = A† − A − 2C,

D = A + B + C.

Integrating equation 8, and letting L1(k′, s) = ln P∗(x = k′, s) (Eq. 6),

L1(x, s) = −

∫ x

k′
ln

(
s + α + βω

γ + βω

)
dω − ln

(
s + A† + Dk′

)
, (10)

A better approximation can then be obtained by expanding the Taylor series up to the second term,

−
∂L(x)
∂x

+
1
2
∂2L(x)
∂x2 = ln

(
s + α + βx
γ + βx

)
. (11)

Differentiating equation 8, and substituting into equation 11,

−
∂L(x)
∂x

= ln
(

s + α + βx
γ + βx

)
−
β

2

(
1

γ + βx
−

1
s + α + βx

)
, (12)

which on integrating gives

L2(x, s) = −

∫ x

k′
ln

(
s + α + βω

γ + βω

)
dω + ln

[
(γ + βx)1/2(s + α + βk′)1/2

(γ + βk′)1/2(s + α + βx)1/2(s + A† + Dk′)

]
. (13)

The required asymptotic solution is obtained by the inverse Laplace transform

P2(x, t) =
1

2πi

∫ C+i∞

C−i∞
g(s)est− f (s)ds (14)

where

g(s) =
(γ + βx)1/2(s + α + βk′)1/2

(γ + βk′)1/2(s + α + βx)1/2(s + A† + Dk′)
(15)

and

f (s) =

∫ x

k′
ln

(
s + α + βω

γ + βω

)
dω. (16)

The integral of equation 14 is expected to be dominated by the highest saddle point at s = s0 for
large t. Using the saddle point approximation, the asymptotic solution is given by

P2(x, t) =
g(s0)es0t− f (s0)√
−2π f ′′(s0)

. (17)



Substituting the corresponding expressions for g(s0), f (s0), and f ′′(s0), equation 17 becomes

P2(x, t) =

[
(γ+βx)(s0+α+βk′)
(γ+βk′)(s0+α+βx)

]1/2 1
s0+A†+Dk′ e

s0t−
∫ x

k′ ln
( s0+α+βω

γ+βk′

)
dω√

2π
∫ x

k′
1

(s0+α+βω)2 dω
, (18)

which can be further evaluated by looking for the stationary function of the exponential term in the
above equation

∂

∂s0

[
es0t−

∫ x
k′ ln

( s0+α+βω

γ+βk′

)
dω

]
= 0. (19)

This gives the expression

s0 =
(x − k′)β
1 − e−βt − α − βx, (20)

which by letting k =
γ
β+1 , we obtain

P2(x, t) =
e−t(α+βk′+β)

(
1 − e−βt

)x−k′

B
β

(1 + k′)(1 − e−βt) + (x − k′)e−βt
× (x − k′) (21)

×
(k + x − 1)k+x−1/2

(2π)1/2(x − k′)x−k′+1/2(k + k′ − 1)k+k′−1/2 .

For large values of x, the Stirling’s approximation is given by x! = xx+1/2

ex (2π)1/2. Taking note that
x! = Γ(x + 1) and replacing x by n, the final form of the asymptotic solution to the QCD parton
branching equation is obtained as

P(n, t) =
e−t(α+βk′+β)(1 − e−βt)n−k′

B
β

(1 + k′)(1 − e−βt) + (n − k′)e−βt
× (n − k′) ×

Γ(n + k)
Γ(n − k′ + 1)Γ(k′ + k)

. (22)

Replacing α, β, γ, and D with their corresponding expressions in equation 9 and letting A = At,
A† = A†t, B = Bt, and C = Ct,

P(n) =
e−(A†+A−B+C)e−(A+C)k′

(
1 − e−(A+C)

)n−k′

B
A+C (1 + k′)

(
1 − e−(A+C)) + (n − k′)e−(A+C)

(23)

×(n − k′) ×
Γ
(
n + A†−C

A+C

)
Γ(n − k′ + 1)Γ

(
k′ + A†−C

A+C

) .
With the last substitution, the branching probabilities A, A†, B,C are now reinterpreted as the branch-
ing probabilities scaled by the QCD evolution parameter. The ratios between the branching probabil-
ities (e.g. A†/A) remain fixed regardless of the scale.

Applied to charged particle multiplicity data, equation 23 represents the probability of obtaining n
charged particles from the hadronisation of gluons in QCD jets, via the branching processes associated
with the parameters A, A†, B, and C.



Figure 1. The asymptotic multiplicity distribution compared to CMS charged particle multiplicity data at (top)
√

s = 0.9, (bottom left) 2.36, and (bottom right) 7 TeV for all pseudorapidity windows |η| < 0.5, 1.0, 1.5, 2.0, 2.4.
The values for successively larger pseudorapidities are scaled by factors of 10 for clarity in presentation.

3 Results

Figure 1 shows charged particle multiplicity distributions in pp collisions for five pseudorapidity
windows |η| < 0.5, 1.0, 1.5, 2.0, and 2.4 as measured by the CMS collboration at

√
s = 0.9, 2.36, and

7 TeV. Comparison is made with the best fit asymptotic multiplicity distribution. The corresponding
parameter values are given in table 1.

Similarly, figure 2 (top) shows charged particle multiplicity distributions for |η| < 0.5, 1.0, and 1.5
at
√

s = 8 TeV measured by the ALICE collaboration. Figure 2 (bottom) shows the same distributions
for |η| < 0.8 and 2.5 at

√
s = 13 TeV measured by the ATLAS collaboration.

The asymptotic multiplicity distribution is found to describe data from CMS collaboration well.
However it is noted that there is increasing difficulty in describing the tail of the distribution as the



Figure 2. The asymptotic multiplicity distribution compared to charged particle multiplicity distributions mea-
sured by (top) ALICE at

√
s = 8 TeV for |η| < 0.5, 1.0, 1.5 and by (bottom) ATLAS at

√
s = 13 TeV for

|η| < 0.8, 2.5. The values for successively larger pseudorapidities are scaled by factors of 10 for clarity in presen-
tation.



pseudorapidity range increases. This suggests that the asymptotic multiplicity distribution is insuf-
ficient to describe all the processes involved in pp collisions and the subsequent fragmentation. At
√

s = 8 TeV the asymptotic multiplicity distribution appears to describe the tail of the distribution
well. However, it poorly models the data at mid-multiplicity (n ∼ 70) and low-multiplicity (n ∼ 10)
regimes. At

√
s = 13 TeV, the data is well modelled for |η| < 0.8 but described poorly for |η| < 2.5,

where the tail of the distribution is overestimated from n ∼ 70.
Referring to table 1, the values of k′, B and C generally tend to 0 or some small value for centre-

of-mass energies of up to 8 TeV. This implies that quark pair creation and the four-gluon vertex occur
at a relatively insignificant rate during the branching process. Quark bremsstrahlung and gluon fission
dominate the branching process, and the entire process occurs with no initial gluons. Hence at the
above centre-of-mass energies, charged particle multiplicities are still better described by the NBD
(k′ = 0). However the non-zero k′ values at

√
s = 13 TeV seem to suggest that more initial gluons are

produced at higher centre-of-mass energies.

4 Conclusion

From the QCD parton branching equation, the asymptotic multiplicity distribution is derived using
the method of Laplace transform and saddle point approximation. Revision of the derivation from
previous work is done with the correct Stirling’s formula. Starting with an initial number of gluons k′,
the distribution describes the probability of producing n gluons via four processes that contribute to
the overall quark and gluon distribution inside QCD jets, with each process occuring with a different
probability.

Table 1. Parameter values for the asymptotic multiplicity distribution.

√
s (TeV) |η| k′ A† A B C χ2/do f

0.9 (CMS)

0.5 0 2.1 1.13 0.0 0.06 0.42/17
1.0 0 3.1 1.59 0.0 0.06 10.43/34
1.5 0 3.8 1.92 0.0 0.05 16.40/46
2.0 0 4.3 2.15 0.1 0.06 17.21/56
2.4 0 4.6 2.29 0.1 0.06 24.91/62

2.36 (CMS)

0.5 0 2.2 1.44 0.0 0.04 1.92/17
1.0 0 3.2 1.95 0.0 0.04 15.32/34
1.5 0 3.6 2.32 0.1 0.05 14.20/44
2.0 0 3.9 2.54 0.2 0.1 23.68/54
2.4 0 4.6 2.65 0.1 0.05 35.94/62

7 (CMS)

0.5 0 2.4 1.73 0.00 0.04 20.60/35
1.0 0 3.4 2.27 0.00 0.05 77.55/64
1.5 0 4.0 2.61 0.00 0.06 140.55/89
2.0 0 4.2 2.97 0.00 0.02 112.71/109
2.4 0 4.3 3.16 0.04 0.02 97.66/121

8 (ALICE)
0.5 0 2.47 1.65 0.00 0.00 55.79/60
1.0 0 3.60 2.15 0.00 0.05 206.26/106
1.5 0 4.3 2.44 0.00 0.10 286.34/134

13 (ATLAS)
0.8 0.997 0.17 1.70 0.00 0.02 45.63/42
2.5 0.859 0.00 2.85 0.00 0.00 336.50/76



The asymptotic multiplicity distribution is applied to charged particle multiplicity distribution data
at
√

s = 0.9, 2.36, 7, 8, and 13 TeV from the ALICE, ATLAS, and CMS collaborations. The parame-
ters k′, A†, A, B, and C are estimated and the result is found to describe the observed multiplicity well
at
√

s = 0.9, 2.36, and 7 TeV well except for the tail of the distribution. The parameter k′ reduces to 0
(yielding NBD), suggesting that branching processes up to 7 TeV are dominated by gluon fission and
quark bremsstrahlung with negligible initial gluon densities.

The asymptotic multiplicity distribution is found to be inadequate in modelling observed multi-
plicities at

√
s = 8 TeV and more so at 13 TeV, where it fails to describe both the mid- and high-

multiplicity regions at larger pseudorapidity intervals. This hints at the presence of additional pro-
cesses which should be accounted for.
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