SUMMARY

ON THE DETECTION OF THE HIGHEST ENERGY PARTICLES IN THE UNIVERSE WITH THE PIERRE AUGER OBSERVATORY

Miguel A. Mostafá

XLVII International Symposium on Multiparticle Dynamics Tlaxcala, Mexico — September 11 – 15, 2017

THE COSMIC RAY ENERGY SPECTRUM

- 10⁹ eV: galactic, strong solar modulation
- ► 10⁹ eV to 10¹⁵ eV: galactic, probably from SNR
- ► 10¹⁵ eV to 10¹⁹ eV some hints of:
 - galactic anisotropy at 10¹⁸ eV
 - composition from heavy to light
- Above 10¹⁹ eV: UHECR *terra incognita!*

Particle Accelerators Full of Spin and Fury, Signifying Something

Elwood H. Smith

Published in the NYT on August 1, 2011

Black Holes Belch Universe's Most Energetic Particles

Image courtesy NASA E/PO, Sonoma State University, Aurore Simonnet

Published in National Geographic News on November 8, 2007

Black Holes Belch Universe's Most Energetic Particles

Image courtesy NASA E/PO, Sonoma State University, Aurore Simonnet

Published in National Geographic News on November 8, 2007 "We discovered the sources of the highest-energy particles in the universe," said team member Miguel Mostafa...

BLACK HOLE OUTFLOWS FROM CENTAURUS A

Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Sub-mm: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI

RESULTS

MOTIVATION

SOURCES OF UHECRS

- Determine acceleration or other production mechanism
- Find maximum energy of sources
- Discover sources or source regions

MOTIVATION

PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

- Identify energy loss processes
- Determine strength of galactic and extra-galactic magnetic fields

MOTIVATION

PARTICLE PHYSICS BEYOND LHC ENERGIES

- Determine characteristics of particle production
- Search for new phenomena, probe fundamental principles

EXTENSIVE AIR SHOWERS

THE PIERRE AUGER OBSERVATORY

THE AUGER SURFACE DETECTOR

12

THE AUGER SURFACE DETECTOR

RESULTS

SUMMARY

THE AUGER FLUORESCENCE DETECTOR

THE AUGER FLUORESCENCE DETECTOR

THE AUGER FLUORESCENCE DETECTOR

I HAD A <u>Hybrid Dream</u>...

I H<u>AD A HYBRID DREAM...</u>

Results

I H<u>AD A HYBRID DREAM...</u>

INTRODUCTION	Detector	Results	SUMMARY
An Au	IGER EVENT		
► 5	SD: large statistics in $24/7$ m	ode, fully efficient at 3 EeV	
▶]	FD: calorimetric particle ID &	calibration, 14% duty cycle	e
► €	energy resolution $\sim 15\%$		
► a	ingular resolution 1° – 2° (S	D) and < 1° (hybrid)	
			15

16

INTRODUCTION	Detector	R	ESULTS	SUMMARY
ENERGY SPI	ECTRUM			
		F /eV		
	10 ¹⁸	10 ¹⁹	10 ²⁰	
$E^{3} I(E) / \left(eV^{2} \mathrm{km^{-2} sr^{-1} yr^{-1}} \right)$	 SD-1500 vertical SD-750 vertical SD-750 vertical Hybrid SD-1500 m inclined 17.5 18.0 18. 	5 19.0 1 lg(<i>E</i> /eV)	9.5 20.0 20	.5

ENERGY SPECTRUM

INTRODUCTION	DETECTOR	R	ESUEIS	SUMMARY
ENERGY SPEC	CTRUM			
		E /eV		
	10^{18}	10 ¹⁹	10^{20}	
$E^{3}J(E) / \left(eV^{2} km^{-2} sr^{-1} yr^{-1} \right)^{1/8}$	Auger (ICRC 201)	7)		
1	7.5 18.0	18.5 19.0	19.5 20.0	
		lg(E/eV)		

ENERGY SPECTRUM

TAKE HOME MESSAGE I

Partial spectra are grouped according to the mass number: A = 1 (red), $2 \le A \le 4$ (gray), $5 \le A \le 26$ (green), $27 \le A$ (blue), and total (brown).

Armando di Matteo, ICRC2015

TAKE HOME MESSAGE II

- ► total systematic uncertainty: 14% (energy scale)
- ► flux uncertainty: 6% (SD)

Inés Valiño, ICRC2015

RESULTS

PRIMARY COMPOSITION

► Longitudinal profile information from FD

PRIMARY COMPOSITION

Longitudinal profile information from FD

LONGITUDINAL SHOWER DEVELOPMENT

Shower maximum (X_{max}) correlates with primary mass

average

standard deviation

Auger Collab., ICRC2017

LONGITUDINAL SHOWER DEVELOPMENT

Shower maximum (X_{max}) correlates with primary mass

interpretation (EPOS-LHC)

average

PROTON-AIR CROSS-SECTION

INELASTIC PROTON-PROTON CROSS-SECTION

STANDARD GLAUBER CONVERSION + PROPAGATION OF MODELING UNC.

INTRODUCTION	Detector	RESULTS	Summary
UHE PHOTON LI Principal component an	MITS alysis		proton Xmax
Monte Carlo Simulations photon 1000 800 3 -2 -1 0	$18 < \log_{10}(E_{1}/eV) < 18.5$ Photon-like proton $1 \qquad 2 \qquad 3 \\ \log_{10}(S_{b})$	MALIO ³ 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ²	Amax photon photon proton Monte Carlo Simulations Energy = 10 ^{18.5} eV

PHOTON FLUX LIMITS

UHE NEUTRINO SEARCHES

VERY INCLINED SHOWERS

Search for:

- up-going (Earth skimming) showers
- down-going deep showers

TAKE HOME MESSAGE III

- new method to extend composition measurement
- mass interpretation is model dependent
- cross section measurement beyond LHC energies

TAKE HOME MESSAGE III

- new method to extend composition measurement
- mass interpretation is model dependent
- cross section measurement beyond LHC energies

TAKE HOME MESSAGE III

- new method to extend composition measurement
- mass interpretation is model dependent
- ► cross section measurement beyond LHC energies

TAKE HOME MESSAGE IV

- updated limits closing on GZK predictions
- ► competitive limit to UHE neutrino diffuse flux
- sensitivity to point sources

LARGE SCALE ANISOTROPY

DIPOLE SEARCHES

► significant (> 5σ) departure from isotropy **above 8 EeV** with a ~ (5 ± 1)% amplitude in the first harmonic in RA

▶ phase transition from 270° to 90° at ~1 EeV

Auger Collab., accepted for publication

LARGE SCALE ANISOTROPY

DIPOLE SEARCHES

- ► significant (> 5σ) departure from isotropy **above 8 EeV** with a ~ (5 ± 1)% amplitude in the first harmonic in RA
- ▶ phase transition from 270° to 90° at ~1 EeV

INTERMEDIATE SCALE ANISOTROPY

CROSS-CORRELATIONS WITH ASTROPHYSICAL SOURCES

- Cross-correlation with flux-limited catalogs
- Cross-correlation with bright AGNs & star-forming regions of starburst galaxies

Data

VERY PRELIMINARY

Model

TAKE HOME MESSAGE V

- significant observation of dipolar anisotropy
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of intermediate scale anisotropy only above "suppression" energy
- ► joint and multi-messenger analysis

TAKE HOME MESSAGE V

Observed Excess Map - E > 39 EeV

- significant observation of dipolar anisotropy
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of intermediate scale anisotropy only above "suppression" energy
- ► joint and multi-messenger analysis

TAKE HOME MESSAGE V

- significant observation of dipolar anisotropy
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of intermediate scale anisotropy only above "suppression" energy
- ► joint and multi-messenger analysis

INTRODUCTION	DETECTOR	KE50L15	SUMMARY
Conclusion	IS	π ⁰ π ⁺	
► Energy	SPECTRUM p	π-/ γ _ε τ ² ζ γ	ν _μ
 impr 	oved statistics over 3 c	orders of magnitude /	
► good	agreement on spectra	l features e ⁻	n
 Primäry 	-MASS	e ⁺ e ⁺ e ⁻	p
► no cl	ear [⊮] icture above ∼ 40	$EeV = \mu^+$	n n n
► <i>p</i> -ai	r and $p^{\vee} - p$ cross section	on at $\sqrt{s} = 40 - 60$ TeV	/ P
► phot	on and neutrino limits	start probing GZK lin	nits
-1	μ-		
 ARRIVAL 	DIRECTIONS µ		v_{μ}
► signi	ficant modulation in R	A ut	
► no ca	indidate source identif	fied ^µ	
hints	of intermediate-scale	anisotropy at the high	nest
energ	gies		

CONCLUSIONS SUMMARY

THANK YOU VERY MUCH!

BACK-UP SLIDES

DETECTOR UPGRADE

COMPARISON OF ELONGATION RATES

