Measurements of the cosmic ray spectrum and composition in the 10¹⁵-10¹⁸ eV energy range

Andrea Chiavassa Università degli Studi di Torino & INFN

• E<10¹⁴ eV - Direct measurements

- Surface (low fluxes)
- Mass (Energy resolution)

• E>10¹³ eV indirect EAS experiments.

- 10¹³<E<10¹⁸ eV no limitations by statistics.
- Main experimental limitation due to absolute calibration that is based on EAS simulations for:
 - Energy calibration
 - Mass calibration
 - γ /hadron separation.

• $10^{13} \le 10^{18} \text{ eV}$

- $E < 10^{17} \text{ eV} \rightarrow$ surface, multicomponent arrays
 - → Cherenkov Light experiments
- $E>10^{17} \text{ eV} \rightarrow \text{surface, multicomponent arrays}$
 - \rightarrow radio experiments
 - \rightarrow low energy extensions of UHE experiments
- Energy measurements
 - Number of particles at observation level (surface and Cerenkov Light detectors)
 - Measurement of the longitudinal shower profile (Fluorescence Light and Radio detectors)
 - Calibration without EAS simulation
 - $E < 10^{14} \text{ eV} \rightarrow \text{cross calibration with direct measurements}$
 - \rightarrow moon shadow
 - $E > 10^{17} \text{ eV} \rightarrow$ hybrid experiments
 - Calibration using EAS simulations depends on:
 - Hadronic Interaction Models
 - Choice of the mass of the Primary Particle

Hadronic Interaction models developments after LHC data

Primary Spectra Measurements

- Differences, in this plot, due to energy calibrations.
 - **10%** E error
 - 20% E error
 - 30% E error
- Better agreement if we compare data calibrated with the same hadronic interaction model.
- Spectral shapes agree

The spectrum above the knee cannot be described by a single slope power law

A. Chiavassa, ISMD2017, Tlaxcala 11-15 September 2017

	$\gamma_{\rm knee}$	γ_{hard}	γ_{step}	E _{hard} (PeV)	E _{step} (PeV)
Ice Top	3.14±0.03	2.90±0.03	3.37±0.08	18±2	130±30
KASCADE-Grande	_	2.95±0.05	3.24±0.08	_	83±10
TUNKA	3.28±0.01	2.98±0.01	3.4±0.11	_	-
TALE	3.21±0.015	2.87±0.01	3.19±0.018	17.8±0.8	109±8
РАО		-	3.29±0.05	-	_

Chemical Composition Measurements

- EAS experiments can study the primary chemical composition only measuring at least two parameters of the showers both depending on E and Z
 - Ne and N_{μ}
 - Surface Arrays
 - E and Shower geometry
 - Slope of the lateral Distribution
 - Image of the Cherenkov Light
 - E and Xmax
 - Fluorescence Light Detectors
 - EAS radio emission
 - EAS Cherenkov Light Detectors
- All these measurements must rely on a calibration based on EAS complete simulation → High Energy Hadronic Interaction Modelis

Chemical Composition Results

- In the last years we have moved from the study of the moments of the distributions of experimental observables to the measurement of the spectra of primaries mass groups.
- Obtained either by:
 - Statistical analysis or Event by event classification

Measurements of the light component spectrum (i.e. mainly protons)

LOFAR \rightarrow EAS radio detection

- Hybrid approach: simultaneous fit of radio (X_{max}) and particle (E) data
- Applying strict cut
 → 118 events
- High resolution $\rightarrow \sigma(X_{max}) \approx 16 \text{ g cm}^{-2}$

Nature 531, (2016) 70

Large Scale Anisotropies

1st Harmonic Amplitudes and Phase measured at different energies

Hint of a change of the phase for $E>10^{14} eV$

The phases measured above 5x10¹⁴ eV are consistent with those obtained by UHE experiments

Hint of an increasing amplitude crossing knee energies

 $E > 5x10^{15} eV \rightarrow$ only upper limits

What we have learned

- 1. Spectrum above the knee has structures
- 2. Knee due to light component
- 3. Steepening of the heavy component spectrum around 10^{17} eV
- 4. Hardening of the light component spectrum slightly above 10^{17} eV
- 5. Very small anisotropies
- 6. Hints of an increasing amplitude and of a change of the phase

What we still don't know

- 1. Conflicting results about the knee of the light component
 - 1. Are we observing two real features of light primaries spectrum?
 - 2. Are we introducing spectral shapes because of systematic effects not under control?
- 2. EAS development is not completely understood
 - 1. Absolute energy calibration?
 - 2. μ excess?
- 3. Knee Energy grows with Z or with A?
- 4. Anisotropy behaviour above the knee
- 5. Anisotropy measurements for different mass groups

Conclusions

- Knowledge of the knee energy range has improved
 - Escape from magnetic field hypothesis is favoured
 - Acceleration limits or Propagation effects?
- We must achieve better control of systematic errors
- Separate on a event by event basis more than two mass groups
 - Are we limited by EAS fluctuations?
- Precise and High statistics measurement are needed
 - LHAASO \rightarrow High Altitude, High Precision, 1 km² array