

3 Parton production in DIS at small x

Martin Hentschinski
martin.hentschinski@udap.mx

IN COLLABORATION WITH

A. Ayala, J. Jalilian-Marian, M.E. Tejeda Yeomans
arXiv:1701.07143/Nucl. Phys. B 920, 232 (2017) arXiv:1604.08526/Phys. Lett. B 761, 229 (2016)

International Symposium on Multiparticle Dynamics ISMD 2017, September 11-15, 2017, Tlaxcala City, Mexico
start with something else: exclusive VM production in UPC@LHC
[Bautista, Ferandez-Tellez, MH; 1607.05203]

- measured at HERA (ep) and LHC ($p p$, ultra-peripheral $p P b$)
- charm and bottom mass provide hard scale \rightarrow pQCD
- exclusive process, but allows to relate to inclusive gluon
reach values down to $x=4 \times 10^{-6} \rightarrow$ (unique ?) opportunity to explore the low x gluon
in particular: test low x evolution and look for possible onset of saturation

- gluon grows like a power at low x
- at some xo: saturation/high density will set in \rightarrow slow down the growth
- when will it happen? do we reach this region already in UPCs@LHC? is it already there

[Bautista, Fernandez-Tellez, MH; 1607.05203]

observation: both non-linear saturation models \& linear NLO BFKL describe data; 2 potential explanations:
a) saturation still far away
b) BFKL can mimic effects in "transition region" \rightarrow both connected!

$$
2 \int d^{2} \boldsymbol{b} \mathcal{N}(x, r, b)=\frac{4 \pi}{N_{c}} \int \frac{d^{2} \boldsymbol{k}}{\boldsymbol{k}^{2}}\left(1-e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\right) \alpha_{s} G\left(x, \boldsymbol{k}^{2}\right) .
$$

dipole amplitude/includes saturation
BFKL unintegrated gluon
evolution differs (presence or absence of nonlinear terms),
.... but essentially same object
technical reason:

- interaction of a single quark line with infinitely many gluons is somehow equivalent to the interaction with a single high energy gluon ("reggeization") [Bartels, Wüsthoff, Z.Phys. C66 (1995) 157-180], others ...
- Color Glass Condensate formalism: interaction collected into a single Wilson line \rightarrow one effective vertex

- to manifest non-linear effects, need to evolve over (relatively large) regions of phase space
- BFKL:

$$
\partial_{\ln 1 / x} G(x, k)=K \otimes G
$$

- BK:
not clear how fast
the non-linear term becomes relevant
- an alternative: observables which reveal nonlinear effects without evolution

Observable ~ $\quad G+\# G^{2}+\# G^{4}+\ldots$
a possibility: observables which depend on the quadrupole

$$
\begin{aligned}
& \mathcal{N}^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)=\frac{1}{N_{c}} \operatorname{Tr}\left(1-V\left(\boldsymbol{x}_{1}\right) V^{\dagger}\left(\boldsymbol{x}_{2}\right) V\left(\boldsymbol{x}_{3}\right) V^{\dagger}\left(\boldsymbol{x}_{4}\right)\right) \\
& \sim G+\# G^{2}+\# G^{4}+\ldots
\end{aligned}
$$

(= 4 gluon exchange doesn't reduce to effective 2 gluon exchange on Xsec. level)

$$
\mathcal{N}(\boldsymbol{r}, \boldsymbol{b})=\frac{1}{N_{c}} \operatorname{Tr}\left(1-V(\boldsymbol{x}) V^{\dagger}(\boldsymbol{y})\right)
$$

contains also 4 gluon exchange, but gathered in 2 Wilson lines

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \operatorname{Pexp} i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \operatorname{Pexp} i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

well known example where this happens:

production of 2 partons in DIS

[Dominguez, Marquet, Xiao, Yuan; 1101.0715]
believe: worthwhile to go a step beyond (\rightarrow extra constrains on so far little studied quadrupole)
this project: calculate
a) inclusive 3-parton production at LO (real part of NLO corrections to di-partons)
b) question: how to organise calculation in effective way; develop techniques for complex calculation?
c) related calculation for diffraction (includes already virtual)
[Boussarie, Grabovsky, Szymanowski, Wallon; 1405.7676, 1606.00419]

Theory: Propagators in background field

use light-cone gauge, with $\mathrm{k}^{-}=\mathrm{n}^{+} \cdot \mathrm{k},\left(\mathrm{n}^{+}\right)^{2}=0, \mathrm{n}^{+} \sim$ target momentum

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...
interaction with the background field:

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered
$\xrightarrow{p} \rightarrow{ }^{q}=\tau_{F, i j}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right) \not 凤$ exponentials (Wilson lines)
$\times \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right)\left[V_{i j}(\boldsymbol{z})-1_{i j}\right]-\theta\left(-p^{+}\right)\left[V_{i j}^{\dagger}(\boldsymbol{z})-1_{i j}\right]\right\}$

$$
A^{-}\left(x^{+}, x_{t}\right)=\delta\left(x^{+}\right) \alpha\left(x_{t}\right)
$$

$$
=\tau_{G}^{a b}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right)\left(-2 p^{+}\right)
$$

$$
\times \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right)\left[U^{a b}(\boldsymbol{z})-1\right]-\theta\left(-p^{+}\right)\left[\left(U^{a b}\right)^{\dagger}(\boldsymbol{z})-1\right]\right\}
$$

momentum vs. configuration space

| conventional |
| :---: | :---: | :---: |
| pQCD |
| (use known techniques) |\quad| inclusion of finite |
| :---: |
| masses |
| (charm mass!) | | intuition: |
| :---: |
| interaction at t=0 |
| with Lorentz |
| contracted target |

our approach:
work in momentum space + exploit configuration space to set a large fraction of all diagrams to zero

How to do that?

Essentially: re-install configuration space rules at the level of a single diagram

essential results: can use configuration space simplification also for momentum space calculations

Result: New effective rules for momentum space

A. Determine zero light-cone time cuts of a given diagram
B. Place new vertices at these cuts

$$
\begin{aligned}
& \xrightarrow{p}=\bar{\tau}_{F, i j}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right) \cdot \not \hbar \\
& \cdot \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right) V_{i j}(\boldsymbol{z})-\theta\left(-p^{+}\right) V_{i j}^{\dagger}(\boldsymbol{z})\right\} \\
& \underset{\sim 000}{p}=\bar{\tau}_{G}^{a b}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right) \cdot\left(-2 p^{+}\right) \\
& \cdot \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right) U^{a b}(\boldsymbol{z})-\theta\left(-p^{+}\right)\left(U^{a b}\right)^{\dagger}(\boldsymbol{z})\right\}
\end{aligned}
$$

verified by explicit calculation for tree level diagrams; in general also extendable to loop diagrams ...

First result: minimal set of amplitudes

(nothing new if you're used to work in coordinate space, momentum space: reduction by factor of 4)

What do we win with new momentum space rules?
can use techniques explored in (conventional)
Feynman diagram calculations
\$ loop integrals (d-dimensional, covariant) \rightarrow won't talk about this today in general: complication due to Fourier factors remain
spinor helicity techniques (calculate amplitudes not Xsec. + exploit helicity conservation in massless QCD) \rightarrow compact expressions \rightarrow for a different application to h.e.f. see [van Hameren, Kotko, Kutak, 1211.0961])

Spinor-helicity formalism

see e.g. [Mangano, Parke; Phys. Rept. 200, 301 (1991)] ,[Dixon; hep-ph/9601359]
central idea: express both external spinors \& polarisation vectors in terms of spinors of massless momenta of definite helicity

$$
\begin{aligned}
&\left|i^{ \pm}\right\rangle \equiv\left|k_{i}^{ \pm}\right\rangle \equiv u_{ \pm}\left(k_{i}\right)=v_{\mp}\left(k_{i}\right) \quad \left\lvert\, \bar{u}_{ \pm}(k)=\bar{u}(k) \frac{1 \mp \gamma_{5}}{2}\right. \bar{v}_{ \pm}(k)=\bar{v}(k) \\
&\left\langle i^{ \pm}\right| \equiv\left\langle k_{i}^{ \pm}\right| \equiv \bar{u}_{ \pm}\left(k_{i}\right)=\bar{v}_{\mp}\left(k_{i}\right) \epsilon_{\mu}^{(\lambda=+)}(k, n) \equiv+\frac{\left\langle k^{+}\right| \gamma_{\mu}\left|n^{+}\right\rangle}{\sqrt{2}\left\langle n^{-} \mid k^{+}\right\rangle}=\left(\epsilon_{\mu}^{(\lambda=-)}(k, n)\right)^{*} \\
& \epsilon_{\mu}^{(\lambda=-)}(k, n) \equiv-\frac{\left\langle k^{-}\right| \gamma_{\mu}\left|n^{-}\right\rangle}{\sqrt{2}\left\langle n^{+} \mid k^{-}\right\rangle}=\left(\epsilon_{\mu}^{(\lambda=+)}(k, n)\right)^{*}
\end{aligned}
$$

... and make heavy use of various IDs
\rightarrow many cancelations already at amplitude level

A reminder from before we realised that ...

Dirac traces from Computer Algebra Codes

- possible to express elements of Dirac trace in terms of scalar, vector and rank 2 tensor integrals
- Evaluation requires use of computer algebra codes; use 2 implementations: FORM [Vermaseren, math-ph/0010025] \& Mathematica packages FeynCalc and FormLink
result (3 partons) as coefficients of "basis"-functions $f_{(a)}$ and $h_{(a, b)}$; result lengthy ($\sim 100 \mathrm{kB}$), but manageable
- currently working on further simpimication through integration by parts relation between basis function (work in progress)

the large Nc result

$$
\begin{aligned}
& \frac{d \sigma^{T, L}}{d^{2} \boldsymbol{p} d^{2} \boldsymbol{k} d^{2} \boldsymbol{q} d z_{1} d z_{2}}=\frac{\alpha_{s} \alpha_{e m} e_{f}^{2} N_{c}^{2}}{z_{1} z_{2} z_{3}(2 \pi)^{2}} \prod_{i=1}^{3} \prod_{j=1}^{3} \int \frac{d^{2} \boldsymbol{x}_{i}}{(2 \pi)^{2}} \int \frac{d^{2} \boldsymbol{x}_{j}^{\prime}}{(2 \pi)^{2}} e^{i \boldsymbol{p}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{1}^{\prime}\right)+i \boldsymbol{q}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{2}^{\prime}\right)+i \boldsymbol{k}\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{3}^{\prime}\right)} \\
& \left\langle(2 \pi) ^ { 4 } \left[\left(\delta^{(2)}\left(\boldsymbol{x}_{13}\right) \delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{1 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right)+\left\{1,1^{\prime}\right\} \leftrightarrow\left\{2,2^{\prime}\right\}\right) N^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}^{\prime}, \boldsymbol{x}_{2}^{\prime}, \boldsymbol{x}_{2}\right)\right.\right. \\
& \left.\quad+\left(\delta^{(2)}\left(\boldsymbol{x}_{23}\right) \delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{2 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right)+\left\{1,1^{\prime}\right\} \leftrightarrow\left\{2,2^{\prime}\right\}\right) N^{(22)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}^{\prime} \mid \boldsymbol{x}_{2}^{\prime}, \boldsymbol{x}_{2}\right)\right] \\
& +(2 \pi)^{2}\left[\delta^{(2)}\left(\boldsymbol{x}_{13}\right) \sum_{h, g} \psi_{1 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{3^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}, \boldsymbol{x}_{2^{\prime} 3^{\prime}}\right) N^{(24)}\left(\boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{1^{\prime} \mid} \mid \boldsymbol{x}_{2^{\prime},-2}, \boldsymbol{x}_{1}, \boldsymbol{x}_{3^{\prime}}\right)+\{1\} \leftrightarrow\{2\}\right. \\
& \left.\quad+\delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{3 ; h, g}^{T, L}\left(\boldsymbol{x}_{13}, \boldsymbol{x}_{23}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right) N^{(24)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3} \mid \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{1^{\prime}}\right)+\left\{1^{\prime}\right\} \leftrightarrow\left\{2^{\prime}\right\}\right] \\
& \left.+\sum_{h, g} \psi_{3 ; h, g}^{T, L}\left(\boldsymbol{x}_{13}, \boldsymbol{x}_{23}\right) \psi_{3^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}, \boldsymbol{x}_{2^{\prime} 3^{\prime}}\right) N^{(44)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{3} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}\right)\right\rangle_{A-}
\end{aligned}
$$

in terms of correlators of Wilson lines \& wave functions

the details: correlators of Wilson lines

- written in terms of dipoles and quadrupoles
$S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)} \equiv \frac{1}{N_{c}} \operatorname{tr}\left[V\left(\boldsymbol{x}_{1}\right) V^{\dagger}\left(\boldsymbol{x}_{2}\right)\right]$
$S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(4)} \equiv \frac{1}{N_{c}} \operatorname{tr}\left[V\left(\boldsymbol{x}_{1}\right) V^{\dagger}\left(\boldsymbol{x}_{2}\right) V\left(\boldsymbol{x}_{3}\right) V^{\dagger}\left(\boldsymbol{x}_{4}\right)\right]$

$$
\begin{aligned}
& N^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) \equiv \\
& \quad \equiv 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(4)}-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(2)} \\
& N^{(22)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) \equiv \\
& \quad \equiv\left[S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)}-1\right]\left[S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(2)}-1\right] \\
& N^{(24)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{6}\right) \equiv \\
& 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)} S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4} \boldsymbol{x}_{5} \boldsymbol{x}_{6}\right)}^{(4)} \\
& \quad-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)} S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{6}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{4} \boldsymbol{x}_{5}\right)}^{(2)} \\
& \begin{array}{l}
N^{(44)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4} \mid \boldsymbol{x}_{5}, \boldsymbol{x}_{6}, \boldsymbol{x}_{7}, \boldsymbol{x}_{8}\right) \equiv \\
\equiv 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(4)} S_{\left(\boldsymbol{x}_{5} \boldsymbol{x}_{6} \boldsymbol{x}_{7} \boldsymbol{x}_{8}\right)}^{(4)} \\
\quad-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{4}\right)}^{(2)} S_{\left(\boldsymbol{x}_{5} \boldsymbol{x}_{8}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{2} \boldsymbol{x}_{3}\right)}^{(2)} S_{\left(\boldsymbol{x}_{6} \boldsymbol{x}_{7}\right)}^{(2)}
\end{array}
\end{aligned}
$$ quadratic

\rightarrow extra handle to explore it wrt. 2 partons

the details: wave functions \& amplitudes

$$
\begin{array}{lr}
\psi_{j, h g}^{L}=-2 \sqrt{2} Q K_{0}\left(Q X_{j}\right) \cdot a_{j, h g}^{(L)}, & j=1,2 \\
\psi_{j, h g}^{T}=2 i e^{\mp i \phi_{x_{12}}} \sqrt{\left(1-z_{3}-z_{j}\right)\left(z_{j}+z_{3}\right)} Q K_{1}\left(Q X_{j}\right) \cdot a_{j, h g}^{ \pm} & j=1,2 \\
\psi_{3, h g}^{L}=4 \pi i Q \sqrt{2 z_{1} z_{2}} K_{0}\left(Q X_{3}\right)\left(a_{3, h g}^{(L)}+a_{4, h g}^{(L)}\right) & \\
\psi_{3, h g}^{T}=-4 \pi Q \sqrt{z_{1} z_{2}} \frac{K_{1}\left(Q X_{3}\right)}{X_{3}}\left(a_{3, h g}^{ \pm}+a_{4, h g}^{ \pm}\right) &
\end{array}
$$

symmetry relation between amplitudes

$$
\begin{aligned}
a_{k+1, h g}^{T, L} & =-a_{k,-h g}^{T, L}\left(\left\{p, \boldsymbol{x}_{1}\right\} \leftrightarrow\left\{q, \boldsymbol{x}_{2}\right\}\right), \quad k=1,3 \\
a_{j, h g}^{T, L} & =a_{j,-h-g}^{(-T, L) *}, \quad j=1, \ldots, 4 .
\end{aligned}
$$

longitudinal photon

$$
\begin{array}{ll}
a_{1,++}^{(L)}=-\frac{\left(z_{1} z_{2}\right)^{3 / 2}\left(z_{1}+z_{3}\right)}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}|\boldsymbol{k}|},} & a_{1,-+}^{(L)}=-\frac{\sqrt{z_{1}} z_{2}^{3 / 2}\left(z_{1}+z_{3}\right)^{2}}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}|\boldsymbol{k}|}} \\
a_{3,++}^{(L)}=\frac{z_{1} z_{2}}{\left|\boldsymbol{x}_{13}\right| e^{-i \phi_{\boldsymbol{x}_{13}}},} & a_{3,-+}^{(L)}=\frac{z_{2}\left(1-z_{2}\right)}{\left|\boldsymbol{x}_{13}\right| e^{-i \phi_{\boldsymbol{x}_{13}}}}
\end{array}
$$

transverse photon

$$
\begin{aligned}
& a_{1,++}^{(+)}=-\frac{\left(z_{1} z_{2}\right)^{3 / 2}}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}}|\boldsymbol{k}|}, \\
& a_{1,+-}^{(+)}=\frac{\sqrt{z_{1}}\left(z_{2}\right)^{\frac{3}{2}}\left(z_{1}+z_{3}\right)}{z_{1} e^{i \theta_{k}}|\boldsymbol{k}|-z_{3} e^{i \theta_{p}}|\boldsymbol{p}|}, \\
& a_{1,-+}^{(+)}=\frac{\sqrt{z_{1} z_{2}}\left(z_{1}+z_{3}\right)^{2}}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}|\boldsymbol{k}|}}, \\
& a_{1,--}^{(+)}=\frac{z_{1}^{3 / 2} \sqrt{z_{2}}\left(z_{1}+z_{3}\right)}{z_{3} e^{i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{i \theta_{k}|\boldsymbol{k}|}}, \\
& a_{3,++}^{(+)}=\frac{z_{1} z_{2}\left(z_{2} z_{3}\left|\boldsymbol{x}_{23}\right| e^{-i \phi_{\boldsymbol{x}_{23}}}+z_{3}\left|\boldsymbol{x}_{13}\right| e^{\left.-i \phi_{\boldsymbol{x}_{13}}-z_{1} z_{2}\left|\boldsymbol{x}_{12}\right| e^{-i \phi_{\boldsymbol{x}_{12}}}\right)}\right.}{\left(z_{1}+z_{3}\right)\left|\boldsymbol{x}_{13}\right| e^{-i \phi_{\boldsymbol{x}_{13}}}}, \\
& a_{3,+-}^{(+)}=\frac{z_{2}^{2}\left(z_{3}\left|\boldsymbol{x}_{23}\right| e^{\left.-i \phi_{\boldsymbol{x}_{23}}-z_{1}\left|\boldsymbol{x}_{12}\right| e^{-i \phi_{\boldsymbol{x}_{12}}}\right)}\right.}{\left|\boldsymbol{x}_{13}\right| e^{i \phi_{\boldsymbol{x}_{13}}}}, \\
& a_{3,-+}^{(+)}=-\frac{z_{2}\left(z_{1}+z_{3}\right)\left(z_{3}\left|\boldsymbol{x}_{23}\right| e^{\left.-i \phi_{\boldsymbol{x}_{23}}-z_{1}\left|\boldsymbol{x}_{12}\right| e^{-i \phi_{\boldsymbol{x}_{12}}}\right)}\right.}{\left|\boldsymbol{x}_{13}\right| e^{-i \phi_{\boldsymbol{x}_{13}}}}, \\
& a_{3,--}^{(+)}=\frac{z_{1} z_{2}\left(z_{1}\left|\boldsymbol{x}_{12}\right| e^{-i \phi_{\boldsymbol{x}_{12}}}-z_{3}\left|\boldsymbol{x}_{23}\right| e^{-i \phi_{\boldsymbol{x}_{23}}}\right)}{\left|\boldsymbol{x}_{13}\right| e^{i \phi_{\boldsymbol{x}_{13}}}} . \\
& \text { for precise def. see paper } \\
& \text { take away message: } \\
& \text { very compact expressions }
\end{aligned}
$$

First attempts in phenomenology

- differential Xsec: given in terms of dipole and quadrupole operators
- need to be evaluated for a given background field configuration = represents dynamics of target

$$
\langle\ldots\rangle_{A^{-}}=\int D[\rho] \ldots e^{-W[\rho]}
$$

ρ : color carge, relates to back-ground field through
Yang-Mills equation

$$
-\boldsymbol{\partial}^{2} A^{c,-}\left(z^{+}, \boldsymbol{x}\right)=g_{s} \rho_{c}\left(z^{+}, \boldsymbol{x}\right)
$$

- in general: weight function W[ρ] not known ... what can be extracted from inclusive DIS data is the dipole amplitude

$$
\left\langle S^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right\rangle_{A^{-}}=\frac{1}{N_{c}}\left\langle\operatorname{tr}\left(V\left(\boldsymbol{x}_{1}\right) V^{\dagger}\left(\boldsymbol{x}_{2}\right)\right)\right\rangle_{A^{-}}
$$

\rightarrow higher correlators not known; way out: "Gaussian approximation" (McLerran-Venugopalan model) for weight function with width $\boldsymbol{\mu}$

$$
W[\rho]=\int d^{2} \boldsymbol{x} \int d^{2} \boldsymbol{y} \int d z^{+} \frac{\rho_{c}\left(z^{+}, \boldsymbol{x}\right) \rho_{c}\left(z^{+}, \boldsymbol{y}\right)}{2 \mu^{2}\left(z^{+}\right)}
$$

can argue: good approximation in dilute limit

- allows to calculate dipole in terms of μ^{2} and 2 point correlator of fields \rightarrow fix this combination from DIS inclusive fits of $S^{(2)}$
- calculate quadrupole correlator in terms of dipole correlator [Dominguez, Marquet, Xiao,Yuan; 1101.0715]

$$
\begin{aligned}
& S^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}\right)=S^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) S^{(2)}\left(\boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{2^{\prime}}\right) \\
& \quad-\frac{\Gamma\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2^{\prime}} ; \boldsymbol{x}_{2}, \boldsymbol{x}_{1^{\prime}}\right)}{\Gamma\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{1^{\prime}}\right)} S^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}\right) S^{(2)}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2^{\prime}}\right)
\end{aligned}
$$

$$
\Gamma\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2^{\prime}} ; \boldsymbol{x}_{2}, \boldsymbol{x}_{1^{\prime}}\right)=\ln \frac{S^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2^{\prime}}\right) S^{(2)}\left(\boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{2}\right)}{S^{(2)}\left(\boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{1^{\prime}}\right) S^{(2)}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2^{\prime}}\right)}
$$

- numerical study: a good approximation to full expression
[Dumitru, Jalilian-IMarian, Lappi, Schenke, Venugoplana; 1108.4764]
- in general: known for finite N_{C}; here: large N_{c} limit \rightarrow argue that expectation values of combinations of $S^{(2)}$ and $S^{(4)}$ factorise
- our treatment: use $\mathrm{S}^{(2)}=1-\mathrm{N}^{(2)}$ and expand for small $\mathrm{N}^{(2)}$ to linear and quadratic order \rightarrow large quadratic corrections: sensitive to non-linear effects
- For $\mathrm{S}^{(2)}$ use model with parameters fitted to rcBK DIS fit [Quiroga-Arias,Albacete, Armesto, Millhano, Salgado, 1107.0625]

$$
\begin{aligned}
& S^{(2)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\int d^{2} \boldsymbol{l} e^{-i \boldsymbol{l} \cdot \boldsymbol{x}_{12}} \Phi\left(\boldsymbol{l}^{2}\right) \\
&=2\left(\frac{Q_{0}\left|\boldsymbol{x}_{12}\right|}{2}\right)^{\alpha-1} \frac{K_{\alpha-1}\left(Q_{0}\left|\boldsymbol{x}_{12}\right|\right)}{\Gamma(\alpha-1)} \\
& \Phi\left(\boldsymbol{l}^{2}\right)=\frac{\Gamma(\alpha)}{Q_{0}^{2} \pi \Gamma(\alpha-1)}\left(\frac{Q_{0}^{2}}{Q_{0}^{2}+\boldsymbol{l}^{2}}\right)^{\alpha}
\end{aligned}
$$

- parameters: $\boldsymbol{\alpha}=2.3$
proton: $Q_{0}{ }^{\text {prot. }}=0.69 \mathrm{GeV}$ correspond to $x=0.2 \cdot 10^{-3}$ gold: $\mathrm{Q}_{0}^{\text {gold }}=A^{1 / 6} \mathrm{Q}_{0}^{\text {prot. }}=1.67 \mathrm{GeV}$

First study at partonic level

- explore deviations from Mercedes star configuration \rightarrow back-to-back for three particles
- parton P_{t} fixed to $2 \mathrm{GeV}, \mathrm{Q}=3 \mathrm{GeV}$

- fix one angle (quarkgluon), vary antiquark-gluon
- sizeable quadratic corrections for gold

Summary:

a more detailed phenomenological study is needed ..., so far:

- possible to use momentum space calculations for CGC calculations \rightarrow access to momentum space techniques
- helicity spinor formalism can greatly simplify calculations within high energy factorisation
- to detect high gluon density effects, observables directly sensitive to such effects should help ("evolution only" might require too much phase space)
\rightarrow we studied such an observables and showed that this could actually work (at partonic level so far)

Gracias!

Configuration space: çuts at $x^{+}=0$

- start without special vertices

- divide xi^{+}integral $\int_{-\infty}^{\infty} d x^{+} \rightarrow \int_{-\infty}^{0} d x^{+}+\int_{0}^{\infty} d x^{+}+$theta functions in plus momenta \& coordinates \rightarrow each of our diagrams cut by a line separating positive \& negative light-cone time (left: negative; right: positive)
- only plus coordinates $\&$ momenta \rightarrow skeleton diagrams

- a "cut" propagator crosses light-cone time $\mathrm{x}^{+}=0$

Which cuts are possible?

- in general: any line through the diagram
- fix kinematics to s-channel kinematics $\left[l^{+}=\mathrm{p}^{+}+\mathrm{q}^{+}+\mathrm{k}^{+}\right.$, all plus momenta positive always]
\rightarrow only s-channel type cuts possible (\sim vertical cuts)

- for this topology, these are the only possible cuts
- NEXT: add special vertices

- recall: $\xrightarrow{p} \rightarrow \sim \sim \sim^{q} \sim\left(p^{+}-q^{+}\right)$plus momentum flow not altered + placed at $z^{+}=0 \Rightarrow$ by default on the cut
- go back to momentum space: special vertices still must be aligned along the cut

- at a cut: "propagator \otimes special vertex \otimes propagator" or "propagator" only; no special vertex anywhere else

How does it help?

- evaluates 50% of possible momentum diagrams to zero

- but each cut contains still several diagrams

Configuration space knows more ...

(partial) Fourier transform for complete propagator

$$
\int \frac{d p^{-}}{2 \pi} \int \frac{d q^{-}}{2 \pi} e^{-i p^{-} x^{+}} e^{i q^{-} y^{+}}\left[S_{F, i l}^{(0)}(p)(2 \pi)^{4} \delta^{(4)}(p-q)+S_{F, i j}^{(0)}(p) \cdot \tau_{F, j k}(p, q) \cdot S_{k l}^{(0)}(q)\right]
$$

obtain free propagation for

- $x^{+}, y^{+}<0$ ("before interaction")
- $x^{+}, y^{+}>0$ ("after interaction")

- for a single cut:

effectively adds up

- reality: more complicated due to mixina of different cuts

VS.

- crucial: positive plus momenta in all lines for tree diagrams
- allows to formulate a new set of effective "Feynman rules"

