Experimental overview of correlations in small collision systems : A brief History

Soumya Mohapatra (Columbia University)

ISMD 2017

First hints of "collectivity" in pp

Min-Bias pp events

Ridge

- Two-particle correlations in pp collisions by CMS in 2010.
- Long range correlation structure, "Ridge", observed along $\Delta \eta$ at $\Delta \phi = 0$.
- Ridge "appears" at high multiplicity.
- Ridge signal much smaller compared to other features of correlation.
 - Not possible/no attempt made to use traditional correlation techniques used in A+A collisions
- Initial state models (CGC) able to reproduce the ridge.

High-Multiplicity pp events

CMS: JHEP 1009:091,2010

The p+Pb ridge

- 2012 LHC p+Pb run
- All LHC experiments (ATLAS, ALICE, CMS) showed presence of strong long-range correlations in p+Pb.
- Correlations strong enough and multiplicities large enough to use A+A methods in p+Pb.

p+Pb: Very similar to Pb+Pb

Azimuthal anisotropy measurements : Fourier harmonics v_n extracted from the two-particle correlations

p+Pb: Very similar to Pb+Pb

- Azimuthal anisotropy measurements : Fourier harmonics v_n extracted from the two-particle correlations
- Fourier harmonics v_2-v_4 : Quite similar p_T dependence in p+Pb and Pb+Pb

p+A, d+A, ³He+A

Also similarities seen in d+A,³He+A anisotropy measurements Reasonably well reproduced by Hydro models

p+Pb: Very similar to Pb+Pb

- Azimuthal anisotropy measurements via multi-particle cumulants
- Similar behavior in p+Pb and Pb+Pb
 - $v_{2}{2} > v_{2}{4} \sim v_{2}{6} \sim v_{2}{8}$
- Many other measurements : mass ordering, constituent-quark scaling

Analysis of 2PCs in pp collisions

- First step: look at long-range correlation component $|\Delta \eta| > 2$
 - Removes near-side jet peak: same as what is done in A+A collisions
- Still dominated by away-side jet.
- Need new method to extract ridge signal.

Analysis technique: Template Fitting Procedure

- A template fitting procedure used to extract long-range correlation
- Fit the correlation in high multiplicity events with Template of two components:
 - Y^{periph}: Correlation in peripheral events (N_{ch} <20)
 - Y^{ridge} : Pedestal*(1 +2 $v_n^2 cos(n\Delta \phi)$) signal

 $Y^{\text{templ}}(\Delta\phi) = F Y^{\text{periph}}(\Delta\phi) + Y^{\text{ridge}}(\Delta\phi),$ $Y^{\text{ridge}}(\Delta\phi) = G\left(1 + 2v_{2,2}\cos\left(2\Delta\phi\right)\right),\,$

Template Fitting : Multiplicity dependence

Comparison of systems & energies : pp and p+Pb¹¹

- Only a weak dependence on multiplicity seen for $pp v_2$
- For p+Pb clear multiplicity dependence is seen for v_2
- $p+Pb v_2$ is larger than $pp v_2$.
- Consistent values for v_2 between 5.02 TeV and 13 TeV pp collisions. No dependence of v_2 on collision energy

Shape of $v_2(p_T)$ in pp and p+Pb

At higher p_T , pp v_2 decreases faster possibly larger contribution from hard processes? 0

Comparison of systems & energies : higher order v_n^{13}

- Comparison for higher order harmonics: v_3 and v_4
- No multiplicity dependence seen in all $pp v_n$.
- Consistent between 5.02 and 13 TeV results

What about multi-particle cumulants?

• In standard cumulant, non-flow sources contribute to four-particle correlation (4);

Subevent cumulants

- In standard cumulant, non-flow sources contribute to four-particle correlation $\langle 4 \rangle$;
- In the subevent method, particles are correlated across all subevents (long-range).
 - 3 subevent cumulant can further suppress away-side iet contribution:

arXiv: 1701.03830

Subevent cumulants

- In standard cumulant, non-flow sources contribute to four-particle correlation (4);
- In the subevent method, particles are correlated across all subevents (long-range).
 - 3 subevent cumulant can further suppress away-side jet contribution;
- New method validated in PYTHIA

four-particle correlation (4);
ss all subevents (long-range).
ide jet contribution;

arXiv: 1701.03830

Cumulants: Energy dependence

p results from standard cumulant show energy dependence

- No such dependence was seen in the Template (or 2PC) v₂
- c_2 {4} is +ve at 5TeV

Cumulants: Energy dependence

- No such dependence was seen in the Template (or 2PC) v_2
- c_2 {4} is +ve at 5TeV
- With 3 subevent, negative C_2 {4} observed in 5.02 TeV *pp*;
- Weak energy dependence in *pp* restored.
- p+Pb has larger flow than pp in the comparable N_{ch} region;

• v_2 {4} consistent with no. multiplicity dependence (For N_{ch}>50)

• $v_2{4} < v_2{2}$ (template fit): flow fluctuation;

Summary-I: Experimental perspective

- Jet/dijet correlation removal is the critical step in interpreting pp collisions
- Standard cumulant measurements not capable of removing non-flow
 - Can not be blindly used in pp collisions (PYTHIA non-closure)
 - Multiplicity fluctuations mimic correlation

20

Summary-I: Experimental perspective

- Jet/dijet correlation removal is the critical step in interpreting pp collisions
- Standard cumulant measurements not capable of removing non-flow
 - Can not be blindly used in pp collisions
 - Multiplicity fluctuations n
- Non-flow removal
 - Sub-event cumulants
 - Template fitting in 2PC

21

Global correlations most definitely present in pp collisions

- Global correlations most definitely present in pp collisions
- No dependence on collision energy (2.76-13TeV)! Seen both in 2PC as well as sub-event cumulants

- Global correlations most definitely present in pp collisions
- No dependence on collision energy (2.76-13TeV)!
 - Seen both in 2PC as well as sub-event cumulants
- No dependence on multiplicity!
 - $v_2{4} < v_2{2}$
 - Event by event v_2 fluctuations

- Global correlations most definitely
- No dependence on collision energy
 - Seen both in 2PC as well as sub-event
- No dependence on multiplicity!
 - $v_2{4} < v_2{2}$
 - Event by event v₂ fluctuations
- p_T dependence qualitatively similar between AA, p+Pb and pp collisions

- Global correlations most definitely present in pp collisions
- No dependence on collision energy (2.76-13TeV)!
 - Seen both in 2PC as well as sub-event cumulants
- No dependence on multiplicity!
 - $v_2{4} < v_2{2}$
 - Event by event v₂ fluctuations
- p_T dependence qualitatively similar between AA, p+Pb and pp collisions
- Global nature of collision does not imply hydrodynamic behavior
 - Energy, multiplicity dependence and fluctuations may be key to understanding origin
 - Relics of measurement technique may still be present!

Backups

27

Large set of new measurements in pp (and p+Pb)²⁸

Two particle inclusive hadron-hadron correlations

- Account for the "jet"-contamination to 2PCs
- First successful extraction of v_n harmonics.
- Detailed p_T , and multiplicity and energy dependence of long-range correlations
- Multi-particle cumulants
 - In principle suppresses correlations: works well for p+A and A+A collisions
 - Will show that it can not be trusted at the typical pp multiplicities
 - Multiplicity fluctuations can mimic correlation signal

Sub-event cumulants

- Much less susceptible to jet/dijet correlations
- Can be trusted for measuring correlation in *pp* collisions, except at very low multiplicities

Ridges in Pb-Pb, p-p and p+Pb

- along $\Delta \eta$ at $\Delta \phi = 0$.
- Is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
- Final state effect may not imply hydro.
- Is there an away-side ridge in pp and pPb?
- What is its detailed p_T , η , and centrality dependence?

• v_2 {4} consistent with no. multiplicity dependence (For N_{ch}>50) • $v_2{4} < v_2{2}$ (template fit): flow fluctuation; • $v_2{4} \approx v_2{2}$ (peripheral subtraction): underestimation of $v_2{2}$;

CMS-like subtraction

Template procedure assumes that the "jet" component of the long-range correlation in higher multiplicity is identical to that in lower multiplicity up to scale factor

Can test assumption by changing choice of low-multiplicity interval and repeating measurements.

Prior status of ridge measurements in pp

No attempts made to study full $\Delta \phi$ dependence of long-range correlation

Ridge strength quantified by the (flawed) ZYAM procedure

Previous measurements extracted the integrated yields on the near-side only.

No idea if there are longrange correlations on > away-side, hidden under the jet peak.

Different N^{Sel}

Different non-flow fluctuation

Different C_2 {4}

Subevent cumulants in p+Pb

- Consistent at large *N_{ch}*: non-flow is smaller;
- Split observed at low *N_{ch}*: suppression of non-flow;

s smaller; sion of non-flow;

Prior status of ridge measurements in pp

0.02

0

No attempts made to study full $\Delta \phi$ dependence of long-range correlation

Ridge strength quantified by the (flawed) ZYAM procedure

Previous measurements extracted the integrated yields on the near-side only.

No idea if there are longrange correlations on > away-side, hidden under the jet peak.

Factorization of V₂

- **Can extract Fourier** coefficients v_{2,2}, v_{3,3} of LRC etc from Template Fit
- If correlation arises from single particle $v_n(p_T)$, then the v_{n.n} should factorize

$$v_{2,2}(p_T^{a},p_T^{b})=v_2(p_T^{a})v_2(p_T^{b})$$

OR
 $v_2(p_T^{a})=v_{2,2}(p_T^{a},p_T^{b})/v_2(p_T^{b})$

$v_2(p_T^a)$ is independent of choice of associated (p_T^b) particle.

ZYAM based subtraction

Template procedure assumes that the "jet" component of the long-range correlation in higher multiplicity is identical to that in lower multiplicity upto scale factor

Can test assumption by changing choice of low-multiplicity interval and repeating measurements.

Comparison of systems & energies : pp

- Comparison of 2.76 TeV and 13 TeV v_2 values as function of p_T

Values consistent independent of p_T

Scaling of v_2 and v_4 in pp and p+Pb

Ratio v_4/v_2^2 is independent of multiplicity in pp and p+Pb collisions. Value is larger in pp collisions.

N^{rec}

Comparison of systems : pp and p+Pb

 $v_2(p_T^a)$ 2.0<|∆η|<5.0 ATLAS Preliminary 0.1 0.5<p_a,b<5.0 GeV **Template Fits** p+Pb \s_{NN}=5.02 TeV 0.05 pp ∖s=13 TeV pp √s=5.02 TeV 50 250 300 100 150 200 N_{ch}^{rec} $v_{3}(p_{T}^{a})$ $2.0 < |\Delta \eta| < 5.0$ ATLAS Preliminary **Template Fits** 0.03 0.02 0.01 50 200 250 100 150 300 N_{ch}^{rec} $v_4(p_T^a)$ 2.0<|Δη|<5.0 ATLAS Preliminary **Template Fits** ° • • [•] þ 0.015 0.01 0.005 250 50 100 150 200 300 N_{ch}^{rec}

Very consistent results between 5TeV and 13TeV pp v2.

Weak dependence on multiplicity seen for pp v2

Higher order harmonics for pp consistent with no multiplicity dependence as well

For p+Pb clear multiplicity dependence is seen for v2 and v3, and slightly weaker dependence for v4

Charge dependence

Δη dependence

Factorization of pp v_{2,2}

Peripheral scaling factor

