Bayesian parameter estimation for heavy-ion collisions: inferring properties of the quark-gluon plasma

J. Scott Moreland–Duke U.

XLVII International Symposium on Multiparticle Dynamics September 14, 2017

Lattice predicts existence of a quark-gluon plasma

Lattice QCD calculations find a pseudo-critical phase transition temperature $T \approx 155$ MeV, where hadrons melt to form a deconfined soup of quarks and gluons dubbed a quark-gluon plasma (QGP)

What are the quark-gluon plasma bulk properties?

Equation of state? Relations between thermal quantities, e.g. $P = P(\epsilon)$ How and under what conditions is it formed in a nuclear collision?

Transport properties? shear/bulk viscosity, probe energy loss, etc How does it recombine to form colorless hadrons?

I) BAYESIAN PARAMETER ESTIMATION

PARAMETRIZE THEORY LANDSCAPE

BAYESIAN PARAMETER ESTIMATION

BAYESIAN PARAMETER ESTIMATION

BAYESIAN PARAMETER ESTIMATION

YIELDS POSTERIOR DISTRIBUTION ON X*

Includes uncertainty in "best-fit value"

posterior = likelihood \times prior

More than one observable $f : x \mapsto (y_1, ..., y_n)$? No problem, calculate likelihood using multivariate Gaussian

Log-likelihood

$$\begin{aligned} \ln(L) &= -\frac{1}{2} (\ln(|\mathbf{\Sigma}|) + (\mathbf{y} - \mathbf{y}_{exp})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{y}_{exp}) + k \ln(2\pi)) \\ \mathbf{\Sigma} &= \mathbf{\Sigma}_{model} + \mathbf{\Sigma}_{exp}^{stat} + \mathbf{\Sigma}_{exp}^{sys} \end{aligned}$$

Multiple model parameters

posterior = likelihood × prior Likelihood function $L(x) \rightarrow L(x_1, ..., x_n)$

Curse of dimensionality

Typically interested in marginalized probabilities

 $L(x_1, ..., x_n)$ easy to calculate, hard to integrate.

Solution

Monte Carlo integration, e.g. importance sampling

MCMC importance sampling:

- 1. large number of walkers in $\{x_1, ..., x_n\}$ space
- 2. update walker positions
- 3. accept new **x** with prob $P \sim L_{new}/L_{old}$

Marginalize by histogramming over flattened dimensions

MCMC and evaluating the likelihood

Number of likelihood samples needed for MCMC varies greatly

Several of the published results in this talk use $N_{sample} > 10^6$ If model is slow, e.g. 1 CPU hour per likelihood evaluation O...good luck

Training an emulator

Gaussian process:

- Stochastic function: maps inputs to normally-distributed outputs
- Specified by mean and covariance functions

As a model emulator:

- Non-parametric interpolation
- Predicts probability distributions
 - Narrow near training points, wide in gaps
- Fast surrogate to actual model

Workflow

Bayesian parameter estimation in physics

LIGO EXPERIMENT

- PLANCK COLLABORATION 2015: constraints on inflation Astron. Astrophys. 594 (2016)
- CKM parameters Eur. Phys. J. C21 (2001)
- GALAXY FORMATION Astron. Astrophys. 409 (2003)

est. black hole masses PRL 118.221101

...and many more examples not listed here

Adapt machinery to relativistic heavy-ion collisions?

II) BAYESIAN PARAMETER ESTIMATION APPLIED TO HEAVY-ION PHYSICS

Bayesian methodology for heavy-ion collisions

Hydro framework imposes local energy and momentum conservation. Clearly breaks in dilute limit. Should apply with care.

Bayesian methodology for heavy-ion collisions

- ▲ Hydro for heavy-ion collisions not trusted on same level as e.g. GR for gravitational waves
- Posterior results <u>always</u> subject to framework credibility

- Event-averaged hydro
- Parametric pre-flow
- Parametric initial state
- First Bayesian posterior on (η/s)(T)
- Omits bulk viscosity
- Two centrality bins

Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions, Novak, Novak, Pratt, Vredevoogd, Coleman-Smith, Wolpert PRC 89 (2014) 034917

 Equation of state from lattice QCD is very close to parametric equation of state preferred by simulation

Constraining the Eq. of State of Super-Hadronic Matter from Heavy-Ion Collisions, Pratt, Sangaline, Sorensen, Wang, PRL 114 (2015) 202301

Theoretical biases affect preferred viscosity

- Event-by-event hydro
- MC-Glauber & KLN initial conditions
- Centrality bins like
 experiment
- Constant η/s
- Omits bulk viscosity, pre-flow

Constraining the Eq. of State of Super-Hadronic Matter from Heavy-Ion Collisions, Bernhard, Marcy, Coleman-Smith, Huzurbazar, Wolpert, Bass, PRC 91 (2015) 054910

Initial stages and onset of hydrodynamic flow

Pre-equilibrium dynamics and heavy-ion observables, Heinz, Liu, Nucl. Phys. A956 (2016) 549-552

Towards precision extraction of QGP properties

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and QGP medium, Bernhard, Moreland, Bass, Liu, Heinz PRC 94 (2016) 024907

Generational improvements

- New TRENTO initial condition model: absorbs initial state uncertainties into several free parameters
- Full event-by-event hydro with hadronic afterburner
- Calculate observables exactly as experiment
- Bulk and shear viscous corrections
- More experimental observables

PHYSICS INSIGHTS

 $\eta/s \min = 0.07 \pm 0.05$ non-zero bulk viscosity

Towards precision extraction of QGP properties

Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and QGP medium, Bernhard, Moreland, Bass, Liu, Heinz PRC 94 (2016) 024907

Model calculations with high-likelihood parameters from Bayesian posterior provide excellent description of bulk observables

Revealing the collision energy dependence of η/s in RHIC-BES Au+Au collisions using Bayesian statistics, Auvinen, Karpenko, Bernhard, Bass, QM17 proceedings

Revealing the collision energy dependence of η/s in RHIC-BES Au+Au collisions using Bayesian statistics, Auvinen, Karpenko, Bernhard, Bass, QM17 proceedings

Revealing the collision energy dependence of η/s in RHIC-BES Au+Au collisions using Bayesian statistics, Auvinen, Karpenko, Bernhard, Bass, QM17 proceedings

Revealing the collision energy dependence of η/s in RHIC-BES Au+Au collisions using Bayesian statistics, Auvinen, Karpenko, Bernhard, Bass, QM17 proceedings

Bulk viscosity: a work in progress...

CHALLENGES

- Different methods for bulk viscous corrections at freezeout
- Less obvious parametric form for $(\zeta/s)(T)$
- Hydro cavitates if bulk is too large

Studying the QGP fireball in 3D

Initial energy density (3D)

Figure credit: Schenke, Schlichting

Studying the QGP fireball in 3D

Constraints on rapidity-dependent initial conditions from charged particle pseudorapidity densities and two-particle correlations,

Ke, Moreland, Bernhard, Bass (in prep)

Optimization problem

Find initial energy density that evolves into final single particle distribution

- Parametrize initial longitudinal energy profile with moment-generating function
- Constrain form using charged particle rapidity distributions

Studying the QGP fireball in 3D

 Trust in hydro and Bayesian statistical machinery lets us deconvolve complex system evolution

QGP hard probes: open heavy-flavour

A data driven analysis for the temperature and momentum dependence of the heavy quark diffusion coefficient in relativistic heavy-ion collisions Xu, Bernhard, Bass, Nahrgang, Cao (in preparation)

J. S. Moreland (Duke U.)

Virtues of Bayesian parameter estimation

- Works for models with multiple correlated parameters
- Rigorous accounting of errors and effect on quantities of interest
- Global analysis can promote and kill models

BACKUP SLIDES

Sensitivity of experimental observables to model parameters

Towards a Deeper Understanding of How Experiments Constrain the Underlying Physics of Heavy-Ion Collisions, Sangaline, Pratt, PRC 93 (2016) 024908