Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions

Tom Trainor

University of Washington

ISMD 2017

Tlaxcala, Mexico

Agenda

- What is collectivity?
- The two-component (soft + hard) model (TCM)
- *p-p* jets, spectra, correlations and the TCM
- *p-p* \bar{p}_t TCM
- p-Pb \bar{p}_t TCM

arXiv:1708.09412

- Pb-Pb \bar{p}_t TCM
- Naïve Glauber model of *p*-Pb collisions
- PYTHIA *p*-*p* model assumptions *v*s reality

What is Collectivity?

collectivity \Rightarrow countable collection, <u>any</u> correlations \Rightarrow collectivity

e.g. dijets = collective phenomenon!

several mechanisms may produce correlations

our task is to identify them via data analysis

Two-component Model – TCMhadron production in *p-p* collisions near midrapiditycharge densities: $\overline{\rho}_0 = \overline{\rho}_s + \overline{\rho}_h$ soft + hard

<u>soft</u> component SC: projectile-nucleon dissociation <u>participant</u> low-*x* gluons $\propto \overline{\rho}_s \propto \log(\sqrt{s/10} \text{ GeV})$

<u>hard</u> component HC: large-angle scattered gluons \rightarrow dijets MB jet fragments: $\overline{\rho}_h \approx \alpha \overline{\rho}_s^2$ (<u>noneikonal</u>) $\alpha = O(0.01)$

hadron production in A-B collisions follows suite:

$$\underline{extensive} \quad \overline{P}_{t} = (N_{part}/2) n_{sNN} \overline{p}_{tsNN} + N_{bin} n_{hNN} \overline{p}_{thNN} \\ \overline{P}_{t}/n_{s} = \overline{p}_{ts} + x(n_{s}) v(n_{s}) \overline{p}_{thNN}(n_{s})$$

p-*p* p_t Spectrum Hard Component

obtain from data above:

$$x(v) = x_{pp} + (0.142 - x_{pp}) \times \{1 + \tanh[(v - 2.3)/0.5]\}/2$$

peripheral Pb-Pb follows *p-p* more-central Pb-Pb shows ST: jet modification PRC 86, 064902(2012)

 $\overline{p}_{thNN}(n_s)$

minimum is 73% of maximum

11

Lessons from \bar{p}_t Data

three successive collision systems

- *p-p* $\overline{p}_{th}(n_s, \sqrt{s})$ trends agree with spectrum HC and MB dijets
- *p-p* dijet production is <u>noneikonal</u>, centrality not relevant
- *p*-Pb $\overline{p}_t(n_s)$ establishes factorization of A-B Glauber and N-N noneikonal
- *p*-Pb \overline{p}_t data confirm MB dijets dominate $\overline{p}_t(n_s)$ trends
- Pb-Pb \overline{p}_t data confirm that naïve Glauber dominates A-A collisions, but peripheral A-A collisions follow p-p trends
- Pb-Pb $\overline{p}_{thNN}(n_s)$ trend confirms jets are <u>modified</u> above ST
- Jets still dominate structure in more-central Pb-Pb collisions

arXiv:1708.09412

Naïve Glauber Model for *p*-Pb

PYTHIA (and Other Monte Carlos)

MPI = multiple parton interactions

 $n_{ch} \propto n_{MPI}$

arXiv: 1706.02166

no jet spectrum cutoff $p_0 \rightarrow 2 \text{ GeV}$

n_{MPI}(b) depends on centrality <u>eikonal model</u>

 $\overline{p}_t(n_{ch})$ trend requires <u>color reconnection</u> (CR)

PYTHIA (and Other Monte Carlos)

arXiv: 1706.02166

MPI = multiple parton interactions $n_{ch} \propto n_{MPI}$ no jet spectrum cutoff $p_0 \rightarrow 2 \text{ GeV}$ $n_{MPI}(b) \text{ depends on centrality}$ <u>eikonal model</u>

 $\overline{p}_t(n_{ch})$ trend requires <u>color reconnection</u> (CR)

those assumptions conflict with MB dijets and the *p-p* TCM see also HIJING, AMPT

Conclusions

- TCM provides accurate, comprehensive description
- Soft component $S(y_t)$ is universal: $\overline{\rho}_s \sim \text{low-}x$ gluons
- Jets dominate $\overline{p}_{th}(n_s, \sqrt{s})$ structure in all systems
- Centrality <u>not relevant</u> for *p-p* collisions (noneikonal)
- A-B systems evolve from isolated N-N to Glauber
- Naïve Glauber model applied to *p*-A system fails
- *p-p* TCM is opposite to PYTHIA basic assumptions
- A-B "collectivity" is jet manifestations, not flows