Multiparticle Dynamics (ISMD2017)
September 11-15, 2017, Tlaxcala City, Mexico

Contribution ID: 3 Type: not specified

Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions

Thursday, 14 September 2017 12:40 (0:25)

Content

Collectivity, as interpreted to mean flow of a dense medium in high-energy nucleus-nucleus (A-A) collisions and described by hydrodynamics, has recently been attributed also to smaller collision systems – p-A and even p-p collisions – based on certain analysis of LHC data. However, alternative analysis methods reveal that some data features attributed to flows are actually manifestations of minimum-bias (MB) jets (dominated by jets near 3 GeV). In this presentation I describe the differential structure of single-particle hadron p_t spectra from SPS to LHC energies in the context of a two-component (soft + hard) model (TCM) of hadron production. I relate the spectrum hard component to measured properties of isolated jets. I use the spectrum TCM to predict the systematics of ensemble-mean \bar{p}_t in p-p, p-A and A-A collision systems over a large energy interval, with accuracy at the percent level. Detailed comparisons of the TCM with both spectrum and correlation data strongly suggest that MB jets (jets being also a "collective" phenomenon) play a dominant role in hadron production near midrapidity. Claimed evidence for flow phenomena is better explained (more simply and quantitatively) as jet manifestations predicted via measured properties of isolated jets.

Session

Collectivity in high energy collisions

Primary author(s): Prof. TRAINOR, Thomas (University of Washington)

Presenter(s): Prof. TRAINOR, Thomas (University of Washington)

Session Classification: Collectivity in high energy collisions: jets, flow and other aspects (II)