Recent ATLAS measurements of azimuthal anisotropies in pp and p+Pb collisions

Adam Trzupek on behalf of the ATLAS experiment Institute of Nuclear Physics PAS, Kraków, Poland XLVII International Symposium on Multiparticle Dynamics ISMD 2017 Tlaxcala City, Mexico, September 11-15, 2017

Ridge in High Multiplicity pp and p+Pb Collisions

Recent results on small systems:

PRC 96 (2017) 024908 – v_n in 5.02 and 13TeV pp and 5.02TeV pPb (2PC) **ATLAS-CONF-2017-006** – charged hadron & muon v_2 in 8.16TeV pPb (2PC) **EPJC 77 (2017) 428, arXiv:1708.03559** – v_n from cumulants in 5.02 and 13 TeV pp, 5.02 TeV p+Pb and low-multiplicity 2.76 TeV Pb+Pb

ATLAS Detector

Two-particle Correlations (2PC)

Two-particle correlation function:

$$C(\Delta \eta, \Delta \phi) = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

S and B are the same and mixed event pairs distributions. B corrects for detector effects

Per-trigger particle yield $Y(\Delta\phi) = \left(\frac{\int_{-\pi/2}^{3\pi/2} B(\Delta\phi) d\Delta\phi}{N^a \int_{-\pi/2}^{3\pi/2} d\Delta\phi}\right) C(\Delta\phi)$

The average number of associated particles per trigger particle in $\Delta\phi$ bin

 Data samples: 13 TeV pp (64 nb⁻¹), for 5.02 TeV pp (170 nb⁻¹) and 5.02 TeV p+Pb (28 nb⁻¹)

Template-fitting Method

To separate the ridge from other correlations (e.g. dijets), ATLAS developed a template fitting procedure (PRL 116, 172301 (2016))

- Assumption: F Y^{periph} describes dijets correlations in full N_{ch}^{rec} range
- Y^{templ} successfully describes Y distributions
- The factorization works well in different N_{ch}^{rec} and $p_{T}^{-ranges}$

$$v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$$

N_{ch} and Energy Dependence of v_2 , v_3 , v_4 in pp and p+Pb

$$v_n(p_T^a) = \sqrt{v_{n,n}(p_T^a, p_T^b)}, \quad 0.5 < p_T^{a,b} < 5 \, GeV$$

- v_n^{pp} have a weak dependence on N_{ch}
 v₂ in 5.02 and 13 TeV pp collision agree
- v_n^{p+Pb} increase with N_{ch}^{rec}
 - v₂ in 5.02 and 8.16TeV pPb system agree
- v_n^{pp} and v_n^{p+Pb} are similar at low multiplicity

p_T Dependence of v_n

$$v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)}$$

- v₂(p_T) in pp and pPb collisions show a rise & fall,
 - Trend characteristic for collective flow observed in AA collisions
 - v₂(p_T) in 5.02 and 13 TeV pp collisions agree
- v_{3,4}(p_T) in pp and p+Pb collisions rise with p_T
 - faster increase for p+Pb system

PRC 96 (2017) 024908

Muon-hadron Correlations in 8.16TeV pPb Collisions⁸

- Elliptic flow of heavy flavor muons was measured in 2.76 TeV in Pb+Pb collsions (ATLAS-CONF-2015-053)
 - Interaction of heavy flavor quarks (c/b) with QGP
- Clear ridge is seen in the correlation function, C, of charged particles (mostly hadrons) and muons pairs in high-multiplicity 8.16 TeV p+Pb collisions

ATLAS-CONF-2017-006

To extract the muon v_2 the 2PC template fitting method is used

Heavy Flavor Muon v₂^µ in 8.16 TeV p+Pb Collisions

Multi-particle Correlations (EPJC 77 (2017) 428)

 To directly explore collectivity in small systems, multi-particle correlations were measured in 5.02 and 13 TeV pp, 5.02 TeV p+Pb and low-multiplicity 2.76 TeV Pb+Pb collisions (k=1,2,3,4):

$$\left\langle corr_{n}\left\{2k\right\}\right\rangle = \left\langle e^{in\left[(\varphi_{1}-\Phi_{n})+\ldots-(\varphi_{k+1}-\Phi_{n})-\ldots\right]}\right\rangle = \left\langle \cos\left[n(\varphi_{1}+\ldots-\varphi_{k+1}-\ldots)\right]\right\rangle = \left\langle v_{n}^{2k}\right\rangle$$

- Using cumulants suppresses "non-flow" correlations, e.g. $c_n\{4\} = \left\langle corr_n\{4\} \right\rangle - 2\left\langle corr_n\{2\} \right\rangle^2$ $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$ negative
 - Negative c_n{4} allows for v_n calculations (sign of collectivity)
- Averaging of cumulants over events was performed in unit bins of the number of reference particles (event selection EvSel_M_{ref})
 - Results for different systems are compared in a common variable <N_{ch}(p_T > 0.4 GeV)> (corrected for efficiency)

Multiplicity and System Size Dependence of c₂{4}¹¹

- c₂{4} cumulant for 5.02 and 13 TeV pp is positive
- For p+Pb and Pb+Pb collisions, for $c_2{4} < 0$
- For $N_{ch} > 100$: $|c_2\{4\}|_{pp} < |c_2\{4\}|_{pPb} < |c_2\{4\}|_{PbPb}$

Elliptic Flow v₂ in p+Pb and Pb+Pb

 v_{2} v₂ $\{2k\}$ of multi particle cumulants (k=1,2,3,4) provide important information on initialstate anisotropy

• v₂ harmonics are larger for Pb+Pb than for p+Pb

• v_2 {4}, v_2 {6} and v_2 {8} are similar for p+Pb as well as for Pb+Pb

Ratios: $v_2{8}/v_2{6}, v_2{6}/v_2{4}, v_2{4}/v_2{2, |\Delta\eta|>2}^{13}$

EPJC 77 (2017) 428

- For Pb+Pb collisions the ratios are independent of N_{ch}, for N_{ch} >120
 v₂{6}/v₂{4}, v₂{8}/v₂{6} are close to 1 but v₂{6}/v₂{4} < v₂{8}/v₂{6}
- $v_2{4}/v_2{2, |\Delta\eta| > 2} \approx 0.85$ (0.7) for Pb+Pb (p+Pb) collisions
 - Significant fluctuations in the initial geometry in both systems (Li Yan and Jean-Yves Ollitrault, PRL 112 (2014) 082301)

Comparison to Other Results

- For 13 TeV pp collisions CMS c₂{4} is roughly consistent with ATLAS cumulant obained for event selection method, EvSel_N_{ch}, but it has a larger magnitude than c₂{4} for the selection EvSel_M_{ref}
- For p+Pb and Pb+Pb collisions, ATLAS and CMS v₂{2, $|\Delta\eta|>2$ }, v₂{4}, v₂{6}, v₂{8} agree very well

New Sub-event Cumulant Method

To lower contributions from "non-flow" in pp collisions, c_n {4} is calculated for separate η intervals of correlated particles (sub-events)

c₂{4}

2 sub-events method

- Sign of collectivity
- Suppression of "non-flow"
- The new sub-event method is described in arXiv:1701.03830

3 sub-events method

Comparison to Other Methods

$$v_{2}^{4} = \sqrt[4]{-c_{2}^{4}}$$

- v_2 {4}, almost independent of N_{ch} in the three systems and very weak dependence on Vs_{NN} in pp collisions
- $v_2{4} < v_2{2} \Rightarrow$ significant fluctuations in the initial geometry

Number of Particle Sources

Number of particle sources, N_s, estimated from transverse flow (Li Yan and Jean-Yves Ollitrault, PRL 112 (2014) 082301)

- N_s is increasing with event multiplicity for p+Pb collisions
- N_s in pp and p+Pb are similar in the common N_{ch} range

Summary

- Harmonics v_2 , v_3 and v_4 were obtained from 2PC in 5.02 and 13 TeV pp, and in 5.02 and 8.16 TeV p+Pb collisions
 - $v_n^{\ pp}$ are constant with multiplicity and energy
 - v_n^{p+Pb} increase with multiplicity and are constant with energy
 - Muon v_2^{p+Pb} is smaller than v_2 of charged hadrons by factor 0.6
- In 5.02 & 13TeV pp, multi particle cumulants, c₂{4}, are positive
 - → collective effects may be "hidden" by "non-flow" correlations
 - Sub-event cumulants method suppresses "non-flow" effects and allows to calculate $v_2\{4\}$ in pp collisions
 - v_2 {4} in pp and p+Pb are almost independent of N_{ch} and Vs_{NN}
- In 5.02 TeV p+Pb and 2.76 TeV Pb+Pb collisions collectivity is supported by v_2 {2, $|\Delta \eta|$ >2}, v_2 {4}, v_2 {6}, v_2 {8} measurements
 - v₂ {4}, v₂{6} v₂{8} are similar and smaller than v₂{2, |Δη|>2}
 → significant fluctuations in the initial geometry

v₃ and v₄ Harmonics

Two-particle correlations with pseudorapidity gap, $|\Delta \eta| > 2$

EPJC 77 (2017) 428

- • v_3 {2, $|\Delta\eta|$ >2} is similar for p+Pb and Pb+Pb collisions
- • v_3 {2, $|\Delta\eta| > 2$ }^{pp}< v_3 {2, $|\Delta\eta| > 2$ } for p+Pb and Pb+Pb collisions
- v₄{2, |Δη|>2} is similar for p+Pb and Pb+Pb collisions, for N_{ch}<120
 For N_{ch} > 120:
- $v_4\{2, |\Delta\eta| > 2\}^{pPb} < v_4\{2, |\Delta\eta| > 2\}^{PbPb}$