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Abstract. We study the relation between two order parameters for deconfinement, nor-
mally employed in the literature: the continuum threshold sy, in the context of QCD Sum
Rules, and the trace of the Polyakov loop ® in the framework of a nonlocal SU(2) chiral
quark model. We establish a bridge between both order parameters at finite temperature
T and baryonic chemical potential . In our analysis, we also include the the chiral quark
condensate, the order parameter for the chiral symmetry restoration.

We found that sy and @ provide us with the same information for the deconfinement tran-
sition, both for the zero and finite chemical potential cases. At zero density, the critical
temperatures for both quantities coincide exactly. This part of the analysis has been rein-
forced by the discussion of the corresponding susceptibilities and the static quark entropy
behavior. At finite u both order parameters provide evidence for the appearance of a
quarkyonic phase.

1 Introduction

In QCD, when quarks are placed in a medium, the color charge is screened due to density and temper-
ature effects [1]. If the density and/or the temperature increases beyond a certain critical value, one
expects that the interactions between quarks will not be able to confine them inside a hadron, so that
they are free to travel longer distances and deconfine. This transition from a confined to a deconfined
phase is usually referred to as the deconfinement phase transition.

A separate phase transition is the realization of chiral symmetry, moving from a Nambu-Goldstone
phase into a Wigner-Weyl phase. Based, on lattice QCD evidence [2] one expects these two phase
transitions to take place at approximately the same temperature at zero chemical potential. At finite
density these two transitions can arise at different critical temperatures. The result will be a quarkyonic
phase, where the chiral symmetry is restored but the quarks and gluons remain confined.
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It has been customary to study the behavior of the trace of the Polyakov loop (PL) ®(T, u) (or-
der parameter for deconfinement phase transition) and quark anti-quark chiral condensate (Jy)(T, 1)
(chiral symmetry restoration), as function of temperature and chemical potential.

The goal of our discussion is to compare the Polyakov loop order parameter with a QCD decon-
finement parameter [3], that corresponds to the squared energy threshold, so(7, ), for the onset of
perturbative QCD (PQCD) in hadronic spectral functions. For an actual general review see Ref. [4].
Around this energy, and at zero temperature, the resonance peaks in the spectrum dissapear or become
very broad, approaching then the PQCD regime. With increasing temperature approaching the critical
temperature for deconfinement, the spectral function should then be described entirely by PQCD.

When both T and i are nonzero, lattice QCD simulations cannot be used, because of the sign prob-
lem in the fermionic determinant. Therefore, one need to resort either to mathematical constructions
to overcome the above limitation, or to model calculations.

The two deconfinement order parameters mentioned before: ®(7,u) and so(7, 1) can be used
to realize a phenomenological description of the deconfinement transition at finite temperature and
density.

The natural framework to determine sy has been that of QCD sum rules. This framework is based
on the operator product expansion (OPE) of current correlators at short distances, extended beyond
perturbation theory, and on Cauchy’s theorem in the complex s-plane. The latter is usually referred
to as quark-hadron duality. Vacuum expectation values of quark and gluon field operators effectively
parametrize the effects of confinement. An extension of this method to finite temperature was first
outlined in [3].

To analyze the role of the PL, we will concentrate on nonlocal Polyakov—Nambu—Jona-Lasinio
(nIPNJL) models (see [5, 6] and references therein), in which quarks move in a background color field
and interact through covariant nonlocal chirally symmetric four point couplings. These approaches,
offer a common framework to study both the chiral restoration and deconfinement transitions. In
fact, the nonlocal character of the interactions arises naturally in the context of several successful
approaches to low-energy quark dynamics, and leads to a momentum dependence in the quark propa-
gator that can be made consistent [7] with lattice results.

The aim of the present work is to study the relation between both order parameters for the de-
confinement transition at finite temperature and chemical potential, @ and s, using the thermal finite
energy sum rules (FESR) with inputs obtained from nlPNJL models.

2 Finite energy sum rules

We begin by considering the (charged) axial-vector current correlator at 7 = 0
T(q?) = i f d*x e OIT (A ()A0)I0) = =g T1(47) + 4ugsTlo(4?) . (D

where A, (x) = : #(x)y,ysd(x) : is the axial-vector current, g, = (w, §) is the four-momentum transfer,
and the functions Ilg,;(¢?) are free of kinematical singularities. Concentrating on the function ITo(¢?)
and writing the OPE beyond perturbation theory in QCD , one of the two pillars of the sum rule
method, one has

To()loco = Co T + " Can(?, 1) O () @
N=1

where 1 is a renormalization scale. The Wilson coefficients Cyy depend on the Lorentz indices and
quantum numbers of the currents. Finally, the local gauge invariant operators Oy, are built from the
quark and gluon fields in the QCD Lagrangian. The vacuum expectation values of those operators



(@ZNmz)), dubbed as condensates, parametrize nonperturbative effects and have to be extracted from
experimental data or model calculations.

The second pillar of the QCD sum rules technique is Cauchy’s theorem in the complex squared
energy s-plane and this allows us to establish the following FESR. For details, we refer the reader to
Ref. [4] and to the original article Ref. [6]

N

(V" Con(Ony) = 47 f s Uiy~ 2114 0@)] N=1,20) . ()
0

For N = 1, the dimension d = 2 term in the OPE does not involve any condensate, as it is
not possible to construct a gauge invariant operator of such a dimension from the quark and gluon
fields. There is no evidence for such a term (at 7 = 0) from FESR analyses of experimental data on
e"e” annihilation and 7 decays into hadrons [8, 9]. At high temperatures, though, there seems to be
evidence for some d = 2 term [10]. However, the analysis to be reported here is performed at lower
values of T, so that we can safely ignore this contribution in the sequel.

The dimension d = 4 term, a renormalization group invariant quantity, is given by

Cu(0s) = TGP + 20 my + ma)aq) )

The extension of this program to finite temperature is fairly straightforward [3, 11, 12], with the
Wilson coefficients in the OPE, Eq. (2), remaining independent of T at leading order in a;, and the
condensates developing a temperature dependence.

In the static limit (§ — 0), to leading order in PQCD, and for T # 0 and u # O the function
o(¢*)loeo in Eq. (1) becomes Mo(w?, T, t)loco; to simplify the notation we shall omit the 7 and u
dependence in the sequel. A calculation of the spectral function in perturbative QCD, at finite tem-
perature and finite density gives

}Tlmno(s»m: : [1—ﬁ+(£)—ﬁ(ﬁ)] 212 5(5) [List-e") + List=e )] . (5)
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where Li,(x) is the dilogarithm function, s = w?, and 7i.(x) = (/T + 1)7! are the Fermi-Dirac
thermal distributions for particles and antiparticles, respectively.

In the hadronic sector we assume pion-pole dominance of the hadronic spectral function, i.e. the
continuum threshold sy to lie below the first radial excitation with mass M,, =~ 1300 MeV.

We have, then

1
—Imlo(s)lauo = 2 FHT, pp) 8(s —m2), (©6)

where f;(T, up) is the pion decay constant at finite 7 and p, with f;(0,0) = 92.21 + 0.14 MeV [13].
Notice we will not include in our spectral function the first part of a; resonance obtained from the
7-decay data [14], since still there is no counterpart in the SU(2) nlPNJL model for the description of
the hadronic vector resonance.

Turning to the FESR, Eq. (3), with N = 1 and no dimension d = 2 condensate, and using Egs. (5)
and (6) one finds

50(T 1)
f " ds [1 — 7y (%) — i (f)] = 87 f2(T. ) + 8T [Lin(—"'") + Lin(—e™")| . (7)
0



This is a transcendental equation determining so(7’, ) in terms of f;(T, u). The next thermal FESR at
zero chemical potential, for completeness, is given by [14],

c <é N B 5 so(T) l ~ so(T) ~ ﬁ
wW(O4)(T) = 4r ds s—Im Iy ($)|uan dss|1—2np s ®)
0 T 0 2T

where np(x) = 1/(1 + ¢¥) is the Fermi thermal function.

3 Thermodynamics at finite density in the PNJL model

We consider a nonlocal SU(2) chiral quark model that includes quark couplings to the color gauge
fields [6]. The quark-antiquark currents include nonlocal covariant form factors G(z) and ¥ (z) char-
acterizing the corresponding four-fermion interactions. The scalar-isoscalar current will generate a
momentum dependent quark mass in the quark propagator, while the “momentum” current will be
responsible for a momentum dependent quark wave function renormalization (WFR) [7, 15, 16].

To proceed, we perform a bosonization of the theory, introducing bosonic fields o 2(x) and 7,(x),
and integrating out the quark fields. Details of this procedure can be found e.g. in Ref. [7].

In order to analyze the properties of meson fields it is necessary to consider the quadratic fluctua-
tions in the Euclidean action:

quad _ 1 d4p

£ T2 ) o Z i Gu(p®) dm(p) du(=p) . )

M

where meson fluctuations 6o, 6, have been translated to a charged basis ¢y, being M the scalar
and pseudoscalar mesons (o, 7%, %) plus the o, field, and G, are the inverse dressed propagators.
The coefficient ry is 1 for charge eigenstates M = 0,70, and 2 for M = n*. At finite temperature,
the meson masses are obtained by solving GM(—m,zu, 0) = 0. The full expressions for the one-loop
functions Gy(g) can be found in Ref. [5, 7].

Following a standard procedure, we can finally identify the corresponding pion weak decay con-
stant

7o
fr= T Fo(-m). (10)
with
d*q Z(q")Z(q") . -
F 2=8Nc.f Tq+ MM 11
o(p°) 2 9(q) D)D) lg" - g~ + M(g")M(q™)] (an

where ¢g* = g + p/2 and D(q) = ¢* + M?(g), with M(p) and Z(p) defined as

M(p)=Z(p) [m+a19(p)] . Z(p) =[1 - f ()],

here g(p) and f(p) are the Fourier transforms of the form factors G(z) and ¥ (2).

We extend the bosonized effective action to finite temperature 7 and chemical potential y using the
standard imaginary time formalism. Concerning the gauge fields, we assume that quarks move on a
constant background field ¢ = A4 = iAg = ig d,0 G4 2%/2, where G, are SU(3) color gauge fields. Then
the traced Polyakov loop, which in the infinite quark mass limit can be taken as an order parameter of
confinement, is given by ® = %Tr exp(i¢/T). We work in the so-called Polyakov gauge [17], where
the matrix ¢ is given a diagonal representation ¢ = @343 + Pgs.



With the constraint of ¢3 and ¢g being real [18, 19], implies ¢3 = 0, leaving only ¢3 as an inde-
pendent variable, and therefore ® = [2 cos(¢3/T) + 1]/3.

Following the same prescriptions as in Refs. [5, 20, 21], the real part of
T and chemical potential u is given by

QMFA at finite temperature

QMFA = qree 4 Offee 4 (@, T) + Qy , (12)

where

0 P+ Mt )| 3242
Qreg — 4TZf10g|: 34 — P + 1 P2
cn 7 4 (pn[)’)
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here 7 are the mean field values of the scalar fields. We have also defined

(p;;,ﬁ)2 =[@n+ DaT + ¢ - w]z ey 14

the sums over color indices run over ¢ = r, g, b, with the color background fields components being
¢ = —¢g = @3, Pp =O,ande,, = \/ﬁ2+m2 .

One possible Ansatz for the Polyakov loop potential ¢(®, T) is that based on the logarithmic
expression of the Haar measure associated with the SU(3) color group integration [19]. Besides
the logarithmic function, a widely used potential is that given by a polynomial function based on a
Ginzburg-Landau Ansatz [22, 23]. The corresponding expressions can be found in Ref. [6].

Given the full form of the thermodynamical potential, the mean field values &, and ¢3 can be
obtained as solutions of the coupled set of gap equations

aQMFA

Teg

— = 0. 15
@1, 902,00 (1)

In order to fully specify the model under consideration, we proceed to fix the model parameters
as well as the nonlocal form factors g(g) and f(g). We consider here Gaussian functions [6] which
guarantee a fast ultraviolet convergence of the loop integrals. The values of the five free parameters
can be found in Ref. [7].

Once the mean field values are obtained, the behavior of other relevant quantities as functions
of the temperature and chemical potential can be determined. We concentrate, in particular, on the
chiral quark condensate (Gq) = 6Q¥§A /Om and the traced Polyakov loop ®, which will be taken as
order parameters for the chiral restoration and deconfinement transitions, respectively. The associated
susceptibilities will be defined as yc, = 9(gq)/0m and yp. = d®/dT. In addition, in Ref [2] the
deconfinement temperature, defined at the peak of the entropy of a static quark S, is located at the
same temperature, within errors, as the chiral susceptibility even at finite lattice spacing. This quantity
defined as

dr,
Sg=——=,
dT
with Fy = =T In @, has the main advantage of being scheme independent.

In this work we define the deconfinement transition temperature, in the crossover region, with the
peak of the Polyakov susceptibility ypr. In the region where the deconfinement is a first order phase
transition we use the same prescription as Ref. [15], where the critical temperature is defined as the
temperature where @ = 0.4.

(16)



4 Results

We begin our analysis studying the finite energy sum rules at zero density. In this scenario, when
u = 0, the Eq. (7) becomes

2 2 _i 272 st(T) _ ﬁ
870 = 30T | ds |1 -2me( 5| a7

where the pion decay constant at finite temperature and/or chemical potential is calculated using
Eq. (10) and Eq. (11) as

A 2 2065 )
2N c n.g n.q c + ¢ - c + c -
Fo(p™) =8T Z f (27T)4 g(pnﬁ) D(Pfl (;)D(p; q’_) [pn,ci’ pn,zf + M(pn,i )M(pnﬁ )] (18)

cn

where pfﬁi =p, P2

It is known that in local versions of the PNJL model, at zero chemical potential, the restoration
of the chiral symmetry and the deconfinement transition take place at different temperatures (see
e.g. Refs. [24, 25]), usually separated by approximate 20 MeV.

In Fig. 1 we plot the continuum threshold, the trace of the PL and the normalized quark con-
densate for the nonlocal (local) PNJL model in thick (thin) line, for the logarithmic and polynomial
effective potentials. As we expected from previous results, in the local version both transitions do not
occur simultaneously. In this scenario, the PQCD threshold vanishes at a critical temperature, T..°, lo-
cated between the chiral critical temperature 7¥ and the PL deconfinement temperature 7 (obtained
through the corresponding susceptibilities).
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Figure 1. Continuum threshold (red solid line), trace of the Polyakov loop (green dashed line) and the normalized
quark condensate (blue dotted line) as a function of the temperature for nonlocal (thick line) and local PNJL
model (thin line).

In the case of the nonlocal PNJL model, for both effective potentials, sy and ® have a similar crit-
ical temperature for the deconfinement transition of approximate 7. ~ 170 MeV. These temperatures
are summarized in Table 1 and can be observed in Fig. 2, where we quote in the left (right) panel
for u = 0, different normalized susceptibilities as functions of the temperature for the logarithmic
(polynomial) PL potential.
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Figure 2. Normalized chiral susceptibility y., (black solid line), Polyakov susceptibility yp.. (green dashed line),
static entropy S, (red dotted line) and dso/dT (blue dashed-dotted line) as a function of the temperature for
logarithmic (left panel) and polynomial (right panel) PL potential.

Logarithmic Polynomial
Non local Local Nonlocal Local
T! [MeV] 171 205 176 201
T® [MeV] 171 171 174 183
T [MeV] 171 189 170 190

Table 1. Chiral critical temperatures T and deconfinement temperatures 72 and 7.

From lattice QCD calculations, at zero chemical potential, the chiral symmetry restoration and the
deconfinement transition take place at the same critical temperature. This behavior was verified in
nlPNJL models [5, 15, 26] and also obtained by finite energy sum rules [12]. We will now identify
the relation between so(7T', 1) and O(7T, ), extending our previous discussion.

In Fig. 3 we plot, for the logarithmic Polyakov effective potential, the normalized quark conden-
sate (gq)/{qq)o, the trace of the PL. ® and the continuum threshold s as functions of the temperature
for three different values of chemical potential. In the middle panel we choose ¢ = 139 MeV, which
correspond to the critical end point chemical potential ucgp. For values of u smaller than ycgp, the
chiral restoration arises via a crossover transition. Beyond this critical density, a first order phase
transition occurs. This value, together with the critical temperature Tcgp = 161 MeV determines the
coordinates of the critical end point.

In the upper panel of Fig. 3, where u = 100 MeV, we see that the chiral and deconfinement transi-
tions are crossovers occurring at the same critical temperature. The peak of the Polyakov susceptibil-
ity and the point where the continuum threshold vanishes occur at approximate the same temperature
T. ~ 166 MeV.

When u becomes equal or higher than y = 139 MeV, the order parameter for the chiral symmetry
restoration has a discontinuity signaling a first order phase transition. These gap in the quark conden-
sate induces also a jump in the trace of the PL (see middle and lower panels in Fig. 3). The value of
® at the discontinuity indicates that at this temperature the system remains confined but in a chiral
symmetry restored state. This region is usually referred as the quarkyonic phase [27, 28].
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Figure 3. Continuum threshold (solid red line), trace of the Polyakov loop (black dashed lined) and the normal-
ized quark condensate (blue dotted line) as a function of the temperature for the logarithmic effective potential.

We see in this way, that the Polyakov loop and the continuum threshold provide the same infor-
mation. When the chiral symmetry is restored, so and ® show that we are still in a confined phase.
This characterizes the occurrence of a quarkyonic phase.



5 Summary and conclusions

In this article we compare the behavior of two order parameters for the deconfinement transition: the
continuum threshold and the trace of the Polyakov loop.

To accomplish this analysis, we use finite energy sum rules for the axial-vector current correlator.

On the other side, the Polyakov loop, is expected to vanish in the confined phase being different
from zero in the deconfined phase.

By saturating the FESR with the pion pole in the spectral function, we used as an input the
pion mass, the pion decay constant and the chiral quark condensate obtained from a nonlocal SU(2)
Polyakov-NJL model with Gaussian form factors, establishing the connection between both ap-
proaches.

We determine, for the nIPNJL model, that the continuum threshold vanishes at the same tem-
perature where the Polyakov susceptibility has its maximum value. In the case of the local PNIJL,
so becomes zero between the critical temperature for the deconfinement transition, according to the
Polyakov loop analysis, and the chiral restoration temperature.

At finite chemical potential, we find that for both deconfinement parameters, beyond the critical
end point chemical potential, the system remains in its confined phase even when the chiral symmetry
is restored. This is an evidence for the appearance of a quarkyonic phase.

We may conclude saying that our analysis gives strong support to the idea that both deconfinement
parameters, in fact, provide the same kind of physical information.
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