Jet measurements in heavy-ion collisions with the ATLAS detector

Laura Havener, Columbia University on behalf of the ATLAS Collaboration ISMD 2017 Tlaxcala City, Mexico Thursday, September 14^{th,} 2017

Jets in HI collisions?

- Jets in pp collisions
 Jets in Pb+Pb collisions
- Jet quenching: phenomena where partons are expected to lose energy in interactions with the hot dense medium produced in HI collisions.
 - jets are thus sensitive to the microscopic structure of the medium.

3

Jets in HI collisions

- Many measurements of jet quenching done in HI collisions at the LHC and RHIC.
- Jet measurements with ATLAS in run 1 (√s_{NN} =2.76 TeV):
 - Dijet asymmetry: dijets are more asymmetric in Pb+Pb compared to MC <</p>

Jets in HI collisions

 Many measurements of jet quenching done in HI collisions at the LHC and RHIC.

dependence

Jets in HI colling

- Many measurements of jet quench HI collisions at the LHC and RHIC.
- Jet measurements with ATLAS in run 1 $(\sqrt{s_{NN}} = 2.76 \text{ TeV})$:
 - Dijet asymmetry
 - Jet suppression
 - Jet fragmentation: the internal structure of jets is modified in Pb+Pb

Jets in HI collisions

- New results dig deeper to better understand jet quenching:
 - More precise measurements with better control over the background subtraction and systematics and unfolded so they can be directly compared to theory.
 - Better statistics allows for measurements at high jet p_T and differentially in jet p_T and rapidity that address specific questions such as what is the flavor dependence of jet quenching and what happens to jet suppression at high jet p_T.
 - Measurements at different center-of-mass energies.
 - What happens in boson+jet systems, etc.

Jet reconstruction: procedure

- Jets are reconstructed using the anti-k_t algorithm for R=0.4 in pp, p+Pb, and Pb+Pb collisions.
- Uncorrelated underlying event (UE) contributes background energy inside that jet cone that varies with η and Φ and hugely event-by-event.
 - Background is subtracted using an iterative procedure that is modulated by harmonic flow. $dE_{T} \sim dE_{T} (1 + \sum v \cos(p(\phi - w)))$

$$\overline{\eta} d\phi \approx \overline{\eta} (1 + \sum_{n} v_n \cos(n(\phi - \psi_n)))$$

- Measured quantities are influenced by both the effect of the UE and the detector.
 - Removed through an unfolding procedure that is under better control if UE is subtracted jet-by-jet.

Jet reconstruction: performance

- Measure of how well you can do any jet measurement.
- MC jets (with a simulated detector response) are embedded into real Pb+Pb data and reconstructed in the same way as data.
- Jet energy scale (JES) and jet energy resolution (JER) are the mean and the width of the p_T^{reco}/ p_T^{true} distribution.

Jet reconstruction: performance

- Measure of how well you can do any jet measurement.
- MC jets (with a simulated detector response) are embedded into real Pb+Pb data and reconstructed in the same way as data.
- Jet energy scale (JES) and jet energy resolution (JER) are the mean and the width of the p_T^{reco}/ p_T^{true} distribution.
 - JES is ~1% above 100 GeV for 0-10% meaning the additive UE background was removed to within 1% of the jet energy.

 $p_{\rm T}^{\rm reco}$ / $p_{\rm T}^{\rm truth}$

Jet reconstruction: performance

- Measure of how well you can do any jet measurement.
- MC jets (with a simulated detector response) are embedded into real Pb+Pb data and reconstructed in the same way as data.
- Jet energy scale (JES) and jet energy resolution (JER) are the mean and the width of the p_T^{reco}/ p_T^{true} distribution.
 - JES is ~1% above 100 GeV for 0-10% meaning the additive UE background JER in 0-10% is ~16% at was removed to within 1% of the jet energy.
 JER in 0-10% is ~16% at 100 GeV and decreases to a constant value at ~6% 12

<u>arXiv:1706.09363</u>

- A traditional method of studying jet quenching is through the dijet asymmetry.
- The jets lose different amounts of energy because they travel different paths in the plasma.

 A traditional method of studying jet quenching is through the dijet asymmetry.

arXiv:1706.09363

 The jets lose different amounts of energy because they travel different paths in the plasma.

 \blacksquare Use ratio of sub-leading jet p_T to the leading jet p_T .

 A traditional method of studying jet quenching is through the dijet asymmetry.

arXiv:1706.09363

 The jets lose different amounts of energy because they travel different paths in the plasma.

Use ratio of sub-leading jet p_T to the leading jet p_T .

• Measure x_J as a function of leading jet p_T and centrality.

Compare to pp dijets.

Kinematic selections: two highest jets in each event with $p_{T1} > 100$ GeV and $p_{T2} > 25$ GeV and $\Delta \phi > 7\pi/8$.

 A traditional method of studying jet quenching is through the dijet asymmetry.

arXiv:1706.09363

 The jets lose different amounts of energy because they travel different paths in the plasma.

Use ratio of sub-leading jet p_T to the leading jet p_T .

- Measure x_J as a function of leading jet p_T and centrality.
 - Compare to pp dijets.
 - Kinematic selections: two highest jets in each event with $p_{T1} > 100$ GeV and $p_{T2} > 25$ GeV and $\Delta \phi > 7\pi/8$.
- ► Unfolded using 2D Bayesian unfolding in *p*_{T1} and *p*_{T2}.

XJ distribution centrality dependence

100 < *р*т1 < 126 GeV

arXiv:1706.09363

X_J **distribution centrality dependence** $100 < p_{T1} < 126 \text{ GeV}$

• x_J in Pb+Pb is more asymmetric in more central collisions.

arXiv:1706.09363

XJ distribution centrality dependence $100 < p_{T1} < 126 \text{ GeV}$

- x_J in Pb+Pb is more asymmetric in more central collisions.
- The most probable configuration for *pp* collisions is *x*_J~1.
- For central Pb+Pb collisions it is *x*_J~0.5.

arXiv:1706.09363

XJ distribution centrality dependence $100 < p_{T1} < 126 \text{ GeV}$

- *x*_J in Pb+Pb is more asymmetric in more central collisions.
- The most probable configuration for *pp* collisions is *x*_J~1.
- For central Pb+Pb collisions it is *x*_J~0.5.
- As Pb+Pb becomes more peripheral the x_J is like in *pp*.

X.1

arXiv:1706.09363

20

 X_{\perp}

x_J distribution

*p*_{T1} dependence 0-10% О

21

$x_{J_{\gamma}} = \frac{p_{T,jet}}{p_{T,\gamma}}$ Y-jet asymmetry

- The photon does not interact with the plasma so the energy loss of the recoiling jet can be probed.
- Measured $x_{J\gamma}$ for $p_{T\gamma} > 60$ GeV, $p_{T,jet} > 30$ GeV, $\Delta \phi > 7\pi/8$

$x_{J_{\gamma}} = \frac{p_{T,jet}}{p_{T,\gamma}}$ **Y-jet asymmetry** 0-10% **O**

- The photon does not interact with the plasma so the energy loss of the recoiling jet can be probed.
- Measured $x_{J\gamma}$ for $p_{T\gamma} > 60$ GeV, $p_{T,jet} > 30$ GeV, $\Delta \phi > 7\pi/8$

Pb+Pb has more asymmetric pairs than pp and MC. increasing p_{TY}

γ-jet asymmetry

centrality dependence 60 < *p*_{Тү} < 80 GeV

 The distributions become less asymmetric with increasing centrality.

γ-jet asymmetry

centrality dependence 100 < *р*т_у < 150 GeV The distribution **becomes like** simulation for 30-50% suggesting that the fraction of energy loss decreases with parton p_{T.}

y-jet angular correlations

 No evidence for large modifications of angular distributions in Pb+Pb compared to pp collisions for photon+jet.

Jet suppression

- Jet quenching implies jet yields in Pb+Pb are expected to be suppressed at a fixed p_T compared to pp collisions.
 - \rightarrow Compare the number of jets in *pp* to Pb+Pb vs. *p*_T.

 The nuclear thickness function (<*T*_{AA}>) contains the effects of nuclear geometry and accounts for the fact that per Pb+Pb collision there are multiple chances for hard scatterings.

Jet spectra

 Jets are measured in six bins of rapidity (out to 2.8) and up to a ~ 1 TeV in jet p_{T.}

RAA VS. PT

ATLAS-CONF-2017-009

RAA VS. PT

ATLAS-CONF-2017-009

*R*_{AA} is lower in central (~0.5) ^{0.5} than peripheral (~0.9). ⁰

*R*_{AA} rises with jet *p*_T until ~300 GeV where it begins to flatten.

RAA VS. PT

ATLAS-CONF-2017-009

• R_{AA} is independent of $\sqrt{s_{NN}}$ (over a narrow range) when comparing run 1 and run 2 results.

RAA vs. rapidity

- Spectra is steeper with increasing rapidity at fixed p_T for the same amount of energy loss and since R_{AA} ~ red/blue.
 - lower R_{AA}

 Guark and gluon fraction changes with rapidity and p_T with more quarks at forward rapidity which should be quenched less.

higher RAA

Competing effects: which one wins or do they cancel?

ATLAS-CONF-2017-009 37

ATLAS-CONF-2017-009 38

Jet fragmentation functions (FF)

- Measures how the particles within the jet are distributed.
 - N_{ch} is the number of charged particles associated with the jet.
- R=0.4 jets with charged tracks starting at 4 GeV for Pb+Pb and 1 GeV p+Pb.
- FF are background subtracted, corrected for tracking efficiency, and fully 2D unfolded in jet *p*_T and z.

Jet fragmentation: pp and p+Pb

$p+Pb R_{D(z)} in jet p_T bins R_{D(z)} = \frac{D(z)_{pPl}}{D(z)_{pp}}$

No modification of jet structure in p+Pb.

Jet fragmentation: Pb+Pb

Pb+Pb $R_{D(z)}$ $R_{D(z)} = \frac{D(z)_{PbPb}}{D(z)_{DD}}$

ATLAS-CONF-2017-005

Pb+Pb $R_{D(z)}$ $R_{D(z)} = \frac{D(z)_{PbPb}}{D(z)_{pp}}$

ATLAS-CONF-2017-005

Enhancement at low z, suppression at intermediate z, enhancement at high z: low z missing from 5.02 TeV because p_T^{trk} cut at 4 GeV.

Summary

- Wide variety of jet measurements from ATLAS:
 - I dijet and y+jet balance, inclusive jet suppression, and jet substructure in Pb+Pb and p+Pb
- Era of precision measurements with careful underlying event subtraction, reduced systematic uncertainties, and unfolding for detector effects.
- Increased statistics in run 2 allowed for differential and high jet *p*_T studies:
 - \implies Single jets are suppressed up to high (TeV scale) p_{T} .
 - No jet p_T dependence in jet internal structure modification.

 \rightarrow Jets are more balanced at higher values of jet p_{T} .

Backup

- Flux of nucleons increases with collision × [fm] "centrality".
- Define "centrality classes":

Events with similar degree of overlap.

 In experiment the total particle production is used as a proxy for b.

Jet reconstruction: procedure

$$\frac{\mathrm{d}E_{\mathrm{T}}}{\mathrm{d}\eta\mathrm{d}\phi}\approx\frac{\mathrm{d}E_{\mathrm{T}}}{\mathrm{d}\eta}(1+\sum_{n}v_{n}\cos\left(n(\phi-\psi_{n})\right))$$

Jet performance: JES

Effect of unfolding on x_J

Moves jets in pp and peripheral to more balanced configurations and jets in central to both more balanced and asymmetric configurations at x_J~0.5

x_J systematics

- JES/JER systematics
 - JES: rigorous uncertainty broken down by source that is *p*_T, η, and centrality dependent
 - JER: dominant contribution comes from the UE which is described well in the MC sample (data overlay)

- Evaluated by rebuilding the response matrix with a systematically varied relationship between the true and reconstructed jet kinematics
- JES is the largest uncertainty in this measurement: 10% at x_J~1 and 15% at x_J ~0.5 in central collisions
- Analysis specific systematics for the combinatoric background and unfolding
 - Unfolding systematic can be as large as JES in central at lower xJ

x_J systematics summary

$R=0.3 x_{J}$

- Centrality dependence of Pb+Pb compared to *pp* dijets for 79<pT1<100 GeV.
- Same analysis for R=0.3 jets since effects of the JER and the background are much less
- R=0.3 jets correspond to R=0.4 jets at a larger energy due to the smaller jet cone so the R=0.3 are shifted to one bin lower in leading jet *p*_T.

R=0.3 X_J *p*_{T1} dependence Pb+Pb 0-10% centrality compared to *pp* dijets.

x_J pp data to MC comparison

x_J 3rd jet

• See less nearby jets in more central collisions.

PLB 751 (2015) 376

- Tested this by unfolding with a new response that takes into account the contribution to the 3rd jet with a weighting applied to match the 3rd jet distribution in data
 - Deviations from the result was well within the systematics of the measurement

γ-jet JER

y-jet systematic uncertainties

- Jets:
 - JES is 5% at low p_T and decreases with p_T
 - Cross calibration: 1% addition JES uncertainty
 - JER is evaluated by increasing the resolutions measured in *pp* by a few percent
 - Uncertainty on flavor composition and different in flavor response is 2% at low p_T and decreases with p_T
 - Addition JES uncertainty in Pb+Pb that is 1% for p_T > 50 GeV and up to 5-10% above 50 GeV from comparing charged-particle jets to calorimeter jets, studying the response of simulated quenched jets, and residual non-closure of simulated jets at low p_T
- Photons:
 - Photon purities adjusted by their statistical uncertainties
 - Photon isolation cut increased by 2 GeV in both pp and Pb+Pb, which increases
 efficiency and lowers purity
 - Non-tight selection varied
 - Photon energy uncertainties evaluated in *pp* which are less than 1%
 - Assumption that the distribution of background photons factorizes

γ-jet background subtraction

- Two contributions to the background:
 - Combinatoric: estimated by embedding PYTHIA8 photo+jet events into real Pb+Pb data
 - Dijet: per-photon distributions subtracted using nontight photons, after scaling by the photon purity

Combinatoric important at low p_T, dijet at high p_T

 $x_{J_{\gamma}} = \frac{p_{T,jet}}{p_{T,\gamma}}$ **Y-jet asymmetry** pp

pp jets compared to MC generator

RAA systematic uncertainties

 \cdot Jet energy scale

- Standard pp JES components + 5 TeV flavor and HI crosscalibration (following ATL-CONF-2015-016)
- HI specific uncertainty due to jet quenching (estimated using studies of the ratio of calo-jet to track-jet p_T)
- Jet energy resolution
 - Standard pp component
 - Established HI component
- Luminosity
- Nuclear thickness function
- Unfolding
 - By comparing to results unfolded using the response matrix without the reweighting

RAA systematics summary

uncertainties on the pp cross section

uncertainties on Pb+Pb yields

uncertainties on R_{AA}

RAA VS. Npart

Energy loss: flavor dependence

- How does energy loss depend on the details of the parton show?
 - Vary the quark and gluon contribution of the jets since gluons are quenched more than quarks.

- Measure suppression as a function of rapidity or jet p_T since gluon fraction decreases with rapidity and jet p_T.
 - Higher R_{AA} at forward rapidity and high p_{T.}

66

D(z)_{pp} MC to data

Systematic uncertainties on p+Pb $R_{D(z)}$

- Jet energy scale
 Jet energy resolution &
 - Unfolding
 - Track reconstruction
 - MC non-closure

$p+Pb R_D(p_T)$ in jet p_T bins

New pp reference at same center of mass energy

Tracking efficiencies

Systematic uncertainties on Pb+Pb R_{D(z)}

- · Jet energy scale
- Jet energy resolution
- Unfolding
- Track reconstruction
- MC non-closure

Systematic uncertainties on Pb+Pb R_{D(z)}
Pb+Pb $R_{D(z)}$ in jet p_T bins

Jets are more modified in central collisions

Pb+Pb $R_{D}(p_{T})$ in centrality bins

Jets are more modified in more central collisions

Pb+Pb $R_{D}(p_T)$ jet p_T in bins

