Transverse Momentum Dependent Functions: Challenges and Future Prospects

ISMD2017

J. Osvaldo Gonzalez-Hernandez University of Turin & INFN

Motivation

At the more fundamental level we would like to learn about confinement and hadronization

factorization theorems, important theoretical tool

Beyond the Collinear Picture

Source of Errors?

Example: Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} = \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

+ large q_{T} corrections + power suppressed terms

Perturbation Theory

Factorization

Drell Yan

Under control, high precision phenomenology:

See for example: arXiv:1706.01473 Ignazio Scimemi, Alexey Vladimirov

Must still address some issues.

Delicate kinematics of available multidimensional data

The matching between low and large transverse momentum

Works for SIDIS at high enough, $Q^2 > 10 \text{ GeV}^2$, energy flow (**integration over z**_h)

Nadolsky, Stump, Yuan DOI: <u>10.1103/PhysRevD.64.059903</u>

However, information about z-dependence gets washed out. Also, integration over z mixes TMD and collinear factorization effects.

TMD Fragmentation Function definition

$$\tilde{D}_{h/q}(z, \boldsymbol{b}_{\perp}; Q) = \sum_{j} \left[\left(\tilde{C}_{j/q} \otimes \frac{d_{h/j}}{z^2} \right) e^{\Gamma_D(Q)} \right] \exp \left\{ g_{j/P}(x, b_{\perp}) + g_K(b_{\perp}) \log \left(\frac{Q}{Q_0} \right) \right\}$$

The Matching Problem in SIDIS $\{Q^2, x_B, P_{hT}, z_h\}$ $q_T = P_{hT}/z_h$ $q_T < Q$ $q_T \sim Q$ $q_T \rightarrow Q$ $q_T < Q$ $q_T \sim Q$ $q_T \rightarrow Q$ TMD region Matching region $p_Q CD$ W + Y (Collinear Factorization)

Works for SIDIS at high enough, $Q^2 > 10 \text{ GeV}^2$, energy flow (**integration over z**_h)

Nadolsky, Stump, Yuan DOI: <u>10.1103/PhysRevD.64.059903</u>

However, information about z-dependence gets washed out. Also, integration over z mixes TMD and collinear factorization effects.

Multidimensional data are ideal.

Can CSS be successfully Implemented?

M. Anselmino, M. Boglione, J.O.G.H., S. Melis , A. Prokudin: Published in JHEP 1404 (2014) 005

Large qT corrections are hard to implement.

Source of Errors?

Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} = \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

+ large q_{T} corrections + power suppressed terms

Perturbation Theory

Factorization

(Re)Calculation of large qT SIDIS cross section

Work in progress: J.O.G.H., T. Rogers, N. Sato, A. Signori, B. Wang

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

+ large q_{T} corrections + power suppressed terms

Perturbation Theory

Source of Errors?

Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} = \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

+ large q_T corrections + power suppressed terms

Factorization

factorization theorems for different leading regions

Power counting and kinematics of the current region

small masses

$$P_{h} \cdot k_{f} = O\left(m^{2}\right)$$
$$P_{h} \cdot k_{i} = O\left(Q^{2}\right)$$
$$\uparrow$$
hard scale

naru scal

current region

k_f

require small values for, $R \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}$

notice quark momenta have to be estimated

ki

precise implementation of the R criterion on data is work in progress

*ONLY AN EXAMPLE

Drell Yan

SIDIS

Recently, BELLE, BaBar, BES III Collins asymmetries.

No modern unpolarized measurements are available.

Recently, BELLE, BaBar, BES III Collins asymmetries.

No modern unpolarized measurements are available.

TASSO, MARK II available for $e+e- \rightarrow X h$

- **pT** distributions
- different energies
- integrated over z

Boglione, JOGH, R. Taghavi Phys.Lett. B772 (2017) 78 arXiv:1704.08882

TASSO, MARK II available for $e+e- \rightarrow X h$

- **pT** distributions
- different energies
- integrated over z

Big Limitation

e⁺

New analysis:

how much information about the **unpolarized TMD FF** can we get from these data sets?

iet axis

e

P

Assuming factorization

$$D_{h/q}(z, p_\perp) = a_{h/q}(z) \ n_d(p_\perp)$$

$$\mathbf{QCD \ picture}$$

$$\widetilde{D}_{h/q}(z, \boldsymbol{b}_{\perp}; Q) = \sum_{j} \left[\left(\widetilde{C}_{j/q} \otimes \frac{d_{h/j}}{z^2} \right) e^{\Gamma_D(Q)} \right] \exp \left\{ g_{j/P}(x, b_{\perp}) + g_K(b_{\perp}) \log \left(\frac{Q}{Q_0} \right) \right\}$$

Things to investigate:

- appropriate functional form for $\mathbf{g}_{j/P}$
- scale evolution regulated by \mathbf{g}_{κ}

$$\tilde{D}_{h/q}(z, \boldsymbol{b}_{\perp}; Q) = \sum_{j} \left[\left(\tilde{C}_{j/q} \otimes \frac{d_{h/j}}{z^2} \right) e^{\Gamma_D(Q)} \right] \exp\left\{ g_{j/P}(x, \boldsymbol{b}_{\perp}) + g_K(\boldsymbol{b}_{\perp}) \log\left(\frac{Q}{Q_0}\right) \right\}$$

Identify region where TMD Effects dominate:

For fully differential cross sections, matching region is Expected to be at

 $p_{\perp} \sim zQ$

Use experimental **<z>** to make an estimate

$$p_{\perp} \sim 2 \,\mathrm{GeV}$$

We looked at a restricted range:

Power law to model transverse momentum dependence

$$D_{h/q}(z, p_\perp) = d_{h/q}(z) h_d(p_\perp)$$

$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{\left(p_{\perp}^2 + M^2\right)^{\alpha}}$$

Boglione, JOGH, Taghavi

 p_\perp

Phys.Lett. B772 (2017) 78-86

Power law parameters follow a logarithmic trend

$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha - 1)} \frac{1}{\left(p_{\perp}^2 + M^{2}\right)^{\alpha}}$$

Boglione, JOGH, Taghavi

TMD

$$\mathcal{F}^{-1}\left\{\frac{d\sigma^{h}}{dz\,d^{2}\boldsymbol{p}_{\perp}}\right\} \propto \exp\left\{\left(\lambda_{\Gamma}(b_{*}) + g_{K}(b_{\perp})\right)\log\left(\frac{Q}{Q_{0}}\right)\right\}\Big|_{b_{\perp}\to z\,b_{\perp}}$$
$$\lambda_{\Gamma}(b_{*}) \equiv \frac{32}{27}\log\left(\log\frac{2e^{-\gamma_{E}}}{\Lambda_{QCD}\,b_{*}}\right)$$

MODEL
$$h(p_{\perp}) = 2(\alpha - 1)M^{2(\alpha-1)} \frac{1}{(p_{\perp}^2 + M^2)^{\alpha}}$$

$$\mathcal{F}^{-1}\left\{\frac{1}{\left(p_{\perp}^{2}+\mathrm{M}^{2}\right)^{\alpha}}\right\} \xrightarrow{\text{large } b_{\perp}} \frac{1}{2^{\alpha} \pi \Gamma(\alpha)} \left(\frac{b_{\perp}}{\mathrm{M}}\right)^{\alpha-1} \sqrt{\frac{\pi}{2}} \frac{e^{-b_{\perp}\mathrm{M}}}{\sqrt{b_{\perp}\mathrm{M}}} \left[1+O\left(\frac{1}{b_{\perp}\mathrm{M}}\right)\right]$$

TMD

$$\mathcal{F}^{-1}\left\{\frac{d\sigma^{h}}{dz\,d^{2}\boldsymbol{p}_{\perp}}\right\} \propto \exp\left\{\left(\lambda_{\Gamma}(b_{*}) + g_{K}(b_{\perp})\right)\log\left(\frac{Q}{Q_{0}}\right)\right\}\Big|_{b_{\perp}\to z\,b_{\perp}}$$
$$\lambda_{\Gamma}(b_{*}) \equiv \frac{32}{27}\log\left(\log\frac{2e^{-\gamma_{E}}}{\Lambda_{QCD}\,b_{*}}\right)$$

Logarithmic behavior of alpha may be interpreted as a consequence of the **Log** in the definition of the **TMD FF**.

$$\alpha = \alpha_0 + \tilde{\alpha} \log\left(\frac{Q}{Q_0}\right)$$
$$g_K(b_\perp) \stackrel{\text{large } b_\perp}{\longrightarrow} \tilde{\alpha} \log(v \, b_\perp)$$

TMD

There are caveats on this interpretation, while consistent with theoretical expectations, it's not the only possibility.

(loss of information through z-integration)

Logarithmic behavior of alpha may be interpreted as a consequence of the **Log** in the definition of the **TMD FF**.

$$\alpha = \alpha_0 + \tilde{\alpha} \log\left(\frac{Q}{Q_0}\right)$$
$$g_K(b_\perp) \stackrel{\text{large } b_\perp}{\longrightarrow} \tilde{\alpha} \log(\nu b_\perp)$$

The lack of information about **z** hinders a full TMD extraction of the FF.

Future upcoming data by BELLE on unpolarized onehadron production may allow for a combined analysis with TASSO and MARK II data.

Phenomenological Test for factorization

Final Remarks

Currently, we are attempting to do phenomenology within **full QCD picture**.

Recent SIDIS multidimensional data is so far the most suitable way to access information about the unpolarized TMD FF. Must solve some *theoretical issues*.

On the side of e+e- one hadron production, in the near future unpolarized cross sections by BELLE may allow for an analysis of the older sets, TASSO MARKII within a full TMD picture.

TMD Factorization for e+e- one hadron production?

Thank you.

Jlab SIDIS data (2012) (Parameters from HERMES extraction).

Ingredients for extraction of Collins function.

e⁺e⁻ → ππΧ

SIDIS

Unpolarized SIDIS cross section (current region)

$$\frac{d\sigma^{\ell+p\to\ell'hX}}{dx_{B}\,dQ^{2}\,dz_{h}\,dP_{T}^{2}} = \frac{2\,\pi^{2}\alpha^{2}}{(x_{B}s)^{2}}\,\frac{\left[1+(1-y)^{2}\right]}{y^{2}}\,F_{UU}$$

$$F_{UU} = \sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

+ large q_T corrections + power suppressed terms

