System Size, **Collision Energy and Rapidity Dependence of Collective Dynamics** Measured by the **PHENIX** Experiment at RHIC

Seyoung Han for the PHENIX Collaborations Ewha womans university, Seoul **RIKEN**, Japan

Collective behavior in heavy ion collision

Small systems data taken by PHENIX

	³ He+Au	d+Au	p+Au	p+p
200 GeV	V	v	V	~
62.4 GeV		v		
39 GeV		v		
19.6 GeV		v		

JHEP09(2010)091

Considerable size of near-side longrange ridge structure measured at p+p 7TeV(CMS)

- What is the smallest system condition which can create QGP?
- Contribution of pre-equilibrium and hadronization stage?
- Initial geometry?
- How to quantify these long-range ridge structure in small systems?
- How can we interpret physically?

Small systems data taken by PHENIX

	³ He+Au	d+Au	p+Au	p+p
200 GeV	v	V	V	v
62.4 GeV		V		
39 GeV		V		
19.6 GeV		v		

JHEP09(2010)091

Considerable size of near-side longrange ridge structure measured at p+p 7TeV(CMS)

- What is the smallest system condition which can create QGP?
- Contribution of pre-equilibrium and hadronization stage?
- Initial geometry?
- How to quantify these long-range ridge structure in small systems?
- How can we interpret physically?

Small systems data taken by PHENIX

	³ He+Au	d+Au	p+Au	р+р
200 GeV	v	v	v	 ✓
62.4 GeV		v		
39 GeV		v		
19.6 GeV		v		

JHEP09(2010)091

Considerable size of near-side longrange ridge structure measured at p+p 7TeV(CMS)

- What is the smallest system condition which can create QGP?
- Contribution of pre-equilibrium and hadronization stage?
- Initial geometry?
- How to quantify these long-range ridge structure in small systems?
- How can we interpret physically?

Central arm :

charged particle measurement, particle identification

Forward-backward arm :

charged particle measurement, triggering, event-plane determination

Analysis method

Event-plane method

- Define event-plane using FVTX-S <u>clusters</u>(hits)
- Calculate resolution of eventplane(Ψ₂) with 3 detectors; CNT,FVTS,BBCS

$$v_2^{CNT} = \frac{\left\langle \cos 2(\phi^{CNT} - \Psi_2) \right\rangle}{\operatorname{Res}(\Psi_2)}$$

2-particle correlation

- Calculate correlation of two <u>tracks</u> Δφ in two different detectors
- Normalize with background correlations
- Fourier expansion fitting and coefficient of cos 2φ modulation c₂,

13

Analysis method

Event-plane method

- Define event-plane using FVTX-S <u>clusters</u>(hits)
- Calculate resolution of event-plane(Ψ_2) with 3 detectors; CNT, FVTS, BBCS

2-particle correlation

- Calculate correlation of two rent
- nh background

ourier expansion fitting and

System size dependence of v_2 and v_3

Initial condition geometry studied using different size of systems.

 v_2 vs. p_T 0-5% in all 3 systems are similar each other, but p+Au bit smaller compare to d+Au and ³He+Au.

SONIC and superSONIC well describe measured v_2 . AMPT could predicts low p_T (<1.5GeV/c, generally).

$$V_2^{pAu} < V_2^{dAu} \approx V_2^{3HeAu}$$

 $V_3^{dAu} < V_3^{3HeAu}$

 $d+Au v_2$ beam energy scan

 $d+Au v_2$ beam energy scan

 $d+Au v_2$ beam energy scan

Discrepancies between $v_2^{\{EP\}}$ and $v_2^{\{Parton Plane\}}$ in AMPT became larger in lower energy and it implies measured v_2 might be more and more dominated by non-collectivity effects.

$d+Au v_2 vs. p_T centrality dependence$

$d+Au v_2 vs. p_T$ centrality dependence arXiv:1708.06983 d+Au vs_m = 39 GeV 0-10% ×2 (a) 10-20% 20-40% - Global Sys. = ±13.8% 0.6 PHENIX AMPT v₂{Parton Plane} AMPT v₂{EP} **39 GeV** • v₂{EP} Global Sys. = ±3.6% 20-40% 0.5E Global Sys. = ±8.7% 0-10% 10-20% 0.4 0.3 0.2 0 1 2 60-74% 40-60% (d) (e) 0.6 Global Sys. = ±20.4% 0.45 d+Au √s_№ = 62.4 GeV 0-5% (a) <u></u> 5-10% (b)圭 10-20% Global Sys. = ±18.9% PHENIX Global Sys. = ±5.6% AMPT v₂{Parton Plane} AMPT v₂{EP} 40-60% 60-74% 0.5 0.4 62.4 GeV v₂{EP} 10-20% Global Sys. = ±1.8% Global Sys. = ±2.6% 0.35 0.3 0-5% 5-10% 0.3 0.25 0.2 0.15 0 0.0 2.5 2 3.5 4 p_ [GeV/c] 1.5 2.5 1.5 3 2 3 3.5 4] p_ [GeV/c] 0.5 ^~ 20-40% (d) 40-60% (e) 60-78% 0.45 Global Sys. = ±5.1% Global Sys. = ±6.5% Global Sys. = ±12.8% 0.4 20-40% 60-78% 40-60% 0.35E

0.3 0.25

0.2 0.15 0.1 0.05

0.5

(c)_

p_[GeV/c]

1.5

3.5 4) p_ [GeV/c] 2.5

p_16eV/c]

$d+Au v_2 vs. p_T$ centrality dependence arXiv:1708.06983 d+Au vs... = 39 GeV 0-10% ×2 (a) = 10-20% 20-40% Global Sys. = ±13.8% 0.6 PHENIX AMPT v₂{Parton Plane} AMPT v₂{EP} **39 GeV** • v₂{EP} Global Sys. = ±3.6% 20-40% 0.5E Global Sys. = ±8.7% 0-10% 10-20% 0.4 0.3 0.2 60-74% 40-60% (d) (e) 0.6 0.45 d+Au √s_№ = 62.4 GeV 0-5% (a) 主 5-10% (b)圭 10-20% Global Sys. = ±18.9% Global Sys. = ±20.4%

p+Au v_2 vs. p_T centrality dependence

This measurement also shows good agreement with published data calculated with the event-plane method.

A similar v_2 with d+Au is seen in p+Au.

 v_2 in peripheral collisions are larger than central collisions which is possibly due to a larger non-flow contribution in peripheral collisions.

Used same parton screening mass as d+Au. AMPT $v_2^{\{EP\}}$ overestimate v_2 in p+Au collisions which is different from the d+Au collisions.

Rapidity dependence

Larger v_2 in Au-going direction, but this asymmetry becomes smaller in lower energies. Forward (p-going, η >0)

- 3 energies have similar size of v₂
- AMPT v₂^{EP} describes the data quite well in all three collision energies with small nonflow contribution.

Backward (Au-going, $\eta < 0$)

- v₂ decreasing at the lower energy
- AMPT $v_2^{(EP)}$ described data points well, but tends to overshoot in lower energies.

Summary

- Collective-like behavior was observed in small systems by the PHENIX experiment.
 - Measured v_n well described by viscous hydro model.
 - Checking following dependencies to identify the collectivity
 - + System size($p/d/^{3}He + Au$)
 - + Collision energy
 - + Centrality defined by the multiplicity(at -4<η<-3)
 - Rapidity(η)
 - + p_T (measured at central region)
- Understanding non-flow contribution is especially important for small systems and lower energies.
- Non-flow contribution needs to be studied further to be conclusive.

THANK YOU

BACKUP

v_2 with identified particles

Clear mass ordering in ³He+Au and d+Au while p+Au not working well.

Smaller split in p+Au predicted in hydro from smaller radial push.

v₂ increases

-goes peripheral collisions. -goes smaller collision energy.

AMPT predicts

-v₂^{PartonP} decrease as centrality becomes peripheral as expected from ellipticity of initial geometry and lower particle multiplicity.

-At lower p_T , v_2 between event plane and parton plane are similar where flow effects dominant.

-At high p_T , v_2 in AMPT with event plane is significantly larger than v_2 with parton plane where non-flow effects may dominant.

May indicate non-flow contributions are larger in the data than in AMPT.