Strong magnetic fields in a nonlocal Polyakov chiral quark model
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Abstract. We study the behavior of strongly interacting matter under an external con-
stant magnetic field in the context of nonlocal chiral quark models that incorporate a
coupling to the Polyakov loop. We find that at zero temperature the behavior of the quark
condensates shows the expected magnetic catalysis effect, our predictions being in good
quantitative agreement with lattice QCD results. On the other hand when the analysis
is extended to the case of finite temperature our results show that nonlocal models nat-
urally lead to the Inverse Magnetic Catalysis effect for both the chiral restoration and
deconfinement transition temperatures.

1 Introduction

The study of the behavior of strongly interacting matter under intense external magnetic fields has
gained increasing interest in the last few years. In fact, this topic has important applications e.g. in
the description of compact objects like magnetars [1], the analysis of heavy ion collisions at very high
energies [2] and the exploration of phases at the early Universe [3]. Since these studies require to
deal with quantum chromodynamics (QCD) in nonperturbative regimes, present theoretical analyses
are based either in the predictions of effective models or in the results obtained through lattice QCD
(LQCD) calculations. In particular, the features of QCD phase transitions under external magnetic
fields deserve significant interest. Recent reviews on this subject can be found in Refs. [4-6]. In view
of the difficulty of theoretical calculations, most works concentrate on the case in which one has a uni-
form and static external magnetic field B. At zero temperature and chemical potential, both the results
of low-energy effective models of QCD and LQCD calculations indicate that the chiral quark conden-
sates should behave as increasing functions of B, which is usually known as “magnetic catalysis”. On
the contrary, close to the chiral restoration temperature, LQCD calculations carried out with realistic
quark masses [7, 8] show that light quark-antiquark condensates behave as nonmonotonic functions
of the external magnetic field, and this leads to a decrease of the transition temperature when the
magnetic field is increased. This effect is known as “inverse magnetic catalysis” (IMC). In addition,

*e-mail: dumm @fisica.unlp.edu.ar



LQCD calculations predict an entanglement between the chiral restoration and deconfinement critical
temperatures [7]. These findings become a challenge to model calculations. Indeed, most naive ef-
fective approaches to low energy QCD (Nambu—Jona-Lasinio model, chiral perturbation theory, MIT
bag model, quark-meson models) predict that the chiral transition temperature should grow with B,
i.e., they do not find IMC. Although many scenarios have been considered in the last few years to
account for the IMC [5], the mechanism behind this effect is not yet fully understood.

The aim of this contribution is to present the results of some recent analyses [9, 10] of the behavior
of strongly interacting matter under a uniform, static magnetic field in the framework of nonlocal chi-
ral quark models. We will show that nonlocal models are able to describe, at the mean field level, not
only the IMC effect but also the entanglement between chiral restoration and deconfinement transition
temperatures when a coupling to the Polyakov loop is incorporated. The “nonlocal Polyakov-Nambu-
Jona-Lasinio” (nIPNJL) models considered here are a sort of nonlocal extensions of the PNJL model
that intend to provide a more realistic effective approach to QCD. In fact, nonlocality arises natu-
rally in the context of successful descriptions of low-energy quark dynamics [11, 12], and it has been
shown [13] that nonlocal models can lead to a momentum dependence in quark propagators that is
consistent with LQCD results. It is also found that in this framework one obtains an adequate descrip-
tion of the properties of light mesons at both zero and finite temperature/density (see e.g. [14] and
references therein).

The article is organized as follows. In Sect. IT we introduce the formalism to deal with a nonlocal
NIJL-like model in the presence of the magnetic field at zero temperature. Afterwards we extend this
formalism to a finite temperature system, taking into account the coupling to the Polyakov loop. In
Sect. III we quote our numerical results, discussing the behavior of the different relevant quantities as
functions of the magnetic field and/or temperature. In Sect. IV we present our conclusions.

2 Theoretical formalism

Let us start by stating the Euclidean action for our nonlocal NJL-like two-flavor quark model,

_ G
Sp = f d*x {w(x> (=if + me) Y(x) - Eja<x>ja(x>} . (1)

Here m, is the current quark mass, which is assumed to be equal for u and d quarks. The currents
Ja(x) are given by

jalx) = f 26 B0+ DT p-3), P

where I, = (1, iys7), and the function G(z) is a nonlocal form factor that characterizes the effective
interaction. We introduce now in the effective action Eq. (1) a coupling to an external electromagnetic
gauge field A,. For a local theory this can be done by performing the replacement

0y = D,=0,-i0A(x), 3)

where O = diag(q,, qq), with ¢, = 2e/3, qa = —e/3, is the electromagnetic quark charge operator.
In the case of the nonlocal model under consideration, the inclusion of gauge interactions implies a
change not only in the kinetic terms of the Lagrangian but also in the nonlocal currents in Eq. (2).
One has

Ylx—z/2) > Wix,x-2/2) Y(x—-z2/2), 4)
and a related change holds for ¥(x + z/2) [13]. Here the function W(s, £) is defined by

W(s,t) = P exp [—i f dr,,QAﬂ#(r)] , ®))



where r runs over an arbitrary path connecting s with 7. As it is usually done, we take it to be a straight
line path.

To proceed it is convenient to bosonize the fermionic theory, introducing scalar and pseudoscalar
fields o(x) and 7(x) and integrating out the fermion fields. The bosonized action can be written as

Spos = —Indet D, » + % f d*x [o-(x)o-(x) + 7(x) - ﬁ(x)] , (6)

where
Dew = P —x)(=iD+m)Gx—x)yo W, %) yolo(®) +iys T- RB| WE X)), (7)

with ¥ = (x+x")/2. We will consider the case of a constant and homogenous magnetic field orientated
along the 3-axis, choosing the Landau gauge, in which one has A, = Bx;d,0. We assume that
the field o~ has a nontrivial translational invariant mean field value &, while the mean field values
of pseudoscalar fields n; are zero. The assumption that & is independent of x does not imply that
the resulting quark propagator will be translational invariant. It just states that the deviations from
translational invariance driven by the magnetic field are not affected by the dynamics of the theory. In
this way, within the mean field approximation (MFA) we get

DY = diag(D\0 DY) 8)
where
DY = 69 = ) (=if - qrBxry2 + me) + & Glx— X) exp |i(qrB/2) (x1 + x7) (v = x5)] .

To deal with this operator it is convenient to introduce its Ritus transform DMFA / defined by
o = f d*x d*x By(x) OV Bpo(') (10)

where Ej(x) and I_E,—,(x), with p = (k, p2, p3, p4), are Ritus functions [15]. The index k is an integer
that will label the Landau energy levels. Using the properties of Ritus functions, and after some
calculation, we obtain

ol = @1)*8ue 6(p2 = p3) 6(p3 = p) 6(pa = p)) D},

A,
Df, = Pus, (-7 /2KasBly2 + py- ) + ZM AL (12)

Here we have introduced the definitions sy = sign(gsB), py = (p3,pa), v = (y3,74), AY =
diag(1,0,1,0), A~ = diag(0,1,0,1) and Pr .1 = (1 — 6ko) L + Sr0 A*. In addition, we denote

an

where

A Am (_1)/“ d*p.

n = B oy (me + 0 g(p% + p)) exp(=p3 /lagB) L, 2p1 /lasBD . (13)

where we have used the definitions k. =k —1/2 + s¢/2 and p, = (p1, p2), while g(pz) is the Fourier
transform of G(x) and L,,(x) are Laguerre polynomials, with the usual convention L_;(x) = 0

Using the fact that D™/ is diagonal in Ritus space the corresponding contribution to the MFA
action can be readily calculated. We obtain

SMFA 0-_2 |q B| d2
bos _ Y9 f P .f 2
vao = g N de 2 J @np [1 (p Mo ) Z I"Akpu] (14




where A = + (=) for s; = +1(~1), and A _ is defined by

f +.f 2 (agtf -f\?
Akm (2k|qu| + p\l + Mkpn MkPH) tp (Mk,PH h Mk’Pu) : (15)

Here it is seen that the functions M;™ P play the role of constituent quark masses in the presence of the
external magnetic field.

We extend now the analysis to a system at finite temperature. This is done by using the standard
Matsubara formalism. To account for confinement effects, we also include the coupling of fermions
to the Polyakov loop (PL), assuming that quarks move on a constant color background field ¢ =
ig 6,0 G4 A“/2, where GY are the SU(3) color gauge fields. We work in the so-called Polyakov gauge,
in which the matrix ¢ is given a diagonal representation ¢ = @313 + ¢gds, taking the traced Polyakov
loop @ = %Tr exp(i¢/T) as an order parameter of the confinement/deconfinement transition. Since —
owing to the charge conjugation properties of the QCD Lagrangian— the mean field traced Polyakov
loop is expected to be a real quantity, and ¢3 and ¢g are assumed to be real valued [16], one has ¢g = 0
@ = [1 + 2cos(¢3/T)]/3. Finally, we include in the Lagrangian a Polyakov-loop potential U (@, T),
which accounts for effective gauge field self-interactions. The resulting scheme is usually denoted as
nonlocal Polyakov-Nambu-Jona-Lasinio (nIPNJL) model [17, 18].

Concerning the PL potential, its functional form is usually based on properties of pure gauge
QCD. In this work we will mostly focus on a potential given by a polynomial function based on a
Ginzburg-Landau ansatz [19], namely

3
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The parameters @; and b; can be fitted to pure gauge lattice QCD results imposing the presence of
a first-order phase transition at Ty, which is a further parameter of the model. In the absence of
dynamical quarks, from lattice calculations one expects a deconfinement temperature 7 = 270 MeV.
However, it has been argued that in the presence of light dynamical quarks this temperature scale
should be considerably reduced. Following Ref. [20] we use here Ty = 210 MeV, taking the values of
a; and b; from Ref. [19].

In this way, the grand canonical thermodynamic potential of the system under the external mag-
netic field is found to be given by

ng;— Z Z quBI dp% [m(p“ﬁg OPu )+i ln( kam)]+ U@@,T), (17)

n=-co c,f k=1

where we have defined py,. = (p3, (2n + 1)aT + ¢.). The sums over color and flavor indices run over
¢ =r,g,band f = u,d, respectively, while the color background fields are ¢, = —¢, = ¢3, ¢, = 0. As
usual in nonlocal models, it is seen that QY™ turns out to be divergent, thus it has to be regularized.
We take here the usual subtraction prescription

5 f
QZF;\_ reg Qgp? ereTe + Q ree. reg , (18)

where the “free” contribution stands for the potential obtained in absence of the strong current-current
coupling (i.e. setting & = 0), but keeping the interaction with the magnetic field and the PL. For this



“free” piece the Matsubara sum can be performed analytically, leading to

2
N. , o1
Qe = - i Z (qrB) l{ (=1, xp) + zf - g(x? =) lnxf] -
-
lg Bl < d L
TZ %Zakfz—i ln{1+exp[—(€,{p+l¢c)/T]}- (19)
I k=0

Here we have defined x; = m?/(2lg;Bl), ax = 2 — 6, 6[,; = (2klgsBl + p* + m2)!/2, while '(—1,xy) =
d{(z, x¢)/dz|,—_1, where {(z, xy) is the Hurwitz zeta function. Owing to the presence of the background
field, one has now a set of two coupled “gap equations”

e TN o0
i lo ’ 0D ’

Given Q];f;’reg, the magnetic field dependent quark condensates (g g ) can be calculated by taking
the derivatives with respect to the corresponding current quark masses. To make contact with the
LQCD results quoted in Ref. [8] we define the quantities

2m - e - e
T = —S—f[<qf61f>3,gT—<qq>o,§]+ 1, @1

where S = (135 x 86)!'/2 MeV. The subindex f can be omitted for B = 0, owing to isospin symmetry.
We also introduce the definitions AE’I;T = E’;,T - Z{;T, Spr = o+ Z‘é’T)/Z and AZpr = (AT}, +
AE%’T) /2, which correspond to the subtracted normalized flavor condensate, the normalized flavor
average condensate and the subtracted normalized flavor average condensate, respectively.

3 Numerical results

To obtain numerical predictions for the behavior of the above defined quantities as functions of the
temperature and the external magnetic field, it is necessary to specify the particular shape of the
nonlocal form factor g(p*). We consider here two often-used forms, namely a Gaussian function and
a “5-Lorentzian” function, defined by

1

(o @2

9P = exp(=p*/A), g(p’) =
respectively. Notice that in these form factors we introduce an energy scale A, which acts as an
effective momentum cut-off. This has to be taken as an additional parameter of the model. Given the
nonlocal form factor, one has to determine the values of the parameters m., G and A. We consider
different parameter sets, obtained by requiring that the model leads to the empirical values of the
pion mass and decay constant, as well as some phenomenologically acceptable value of the quark
condensate at B = 0 and T = 0. We take in particular (~(gg);g)""* = 220, 230 and 240 MeV. The
corresponding parameter sets for the Gaussian and 5-Lorentzian form factors can be found e.g. in
Ref. [10].
Let us start by discussing our results for zero temperature. In Fig. 1 we show the predictions of
our model for AZz( (left panel) and E%,o - E%,o (right panel) as functions of eB. LQCD data from
Ref. [8] are also displayed in both cases for comparison. Solid, dashed and dotted curves correspond

t0 (—(Grqr)pg)'? = 220, 230 and 240 MeV, respectively, for the case of a Gaussian form factor. It can



be seen that the predictions for AXp are very similar for all parametrizations considered, and show a

very good agreement with LQCD results. In the case of X | — 2% o> although the overall agreement

with LQCD calculations is still good, we find some dependence on the parameterization. For the case
of the 5-Lorentzian form factor our results turn out to be qualitatively similar to those in Fig. 1.
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Figure 1. Normalized condensates as functions of the magnetic field at T = 0, for the case of a Gaussian form
factor. Left panel: subtracted flavor average; right panel: flavor difference [see Eq. (21) and the text below]. Solid
reg

(black), dashed (red) and dotted (blue) curves correspond to parameterizations leading to (_@‘1}0,0)1/ 3 =1220,230
and 240 MeV, respectively. Full square symbols indicate LQCD results taken from Ref. [8].

We turn now to our numerical results for a system at finite temperature. In the upper panels of
Fig. 2 we show the behavior of the averaged chiral condensate £ 7 and the traced Polyakov loop ® as
functions of the temperature, for three representative values of the external magnetic field B, namely
B =0,0.6 and 1 GeV>. The curves correspond to parameter sets leading to (=(gg);)"/* = 230 MeV.
Given a value of B, it is seen from the figure that for the cases of both Gaussian and 5-Lorentzian
form factors the chiral restoration and deconfinement transitions proceed as smooth crossovers, at
approximately the same critical temperatures. For definiteness we take these temperatures from the
maxima of the chiral and PL susceptibilities, which we define as the derivatives y., = —8[((5114);’“’} +
(Jd);e%)ﬂ] /0T and yo = 0®/AT, respectively. Our results for the behavior of the susceptibilities as

functions of the temperature, for B = 0, 0.6 and 1 GeV2, are shown in the lower panels of Fig. 2.

Table 1. Critical temperatures for B = 0 and various parametrizations.

Gaussian 5-Lorentzian
(—(qd )y55)"> (MeV) 220 230 240 | 220 230 240

Chiral T, MeV) 182.1 179.1 177.4 177.0 177.0 177.8
Deconfinement 7. (MeV) 182.1 178.0 175.8 174.8 174.7 175.5

The chiral restoration and deconfinement critical temperatures obtained in absence of external
magnetic field for different parametrizations are quoted in Table 1. It is seen that in all cases the
splitting between both critical temperatures is below 5 MeV, which is consistent with the results
obtained in lattice QCD. From Table 1 it is also seen that the values of critical temperatures do not
vary significantly with the parametrization (recalling that in all cases the parameters have been fixed
to reproduce the empirical values of the pion mass and decay constant). On the other hand, the critical
temperatures in Table 1 are found to be somewhat higher than those obtained from LQCD, which lie
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Figure 2. Upper panels: normalized flavor average condensate and traced Polyakov loop as functions of the

temperature, for three representative values of eB. Lower panels: behavior of the corresponding chiral and PL
susceptibilities as functions of the temperature.

around 160 MeV [21, 22]. It is worth noticing that in absence of the interaction with the Polyakov
loop the values of T, drop down to about 130 MeV [9].

Let us discuss the effect of the magnetic field on the phase transition features. From Fig. 2 it is
seen that the splitting between the chiral restoration and deconfinement critical temperatures remains
very small in the presence of the external field (in fact, a detailed analysis shows that the splitting gets
reduced for larger values of eB). In addition, it is seen that the nonlocal NJL models show inverse
magnetic catalysis. Indeed, contrary to what happens e.g. in the standard local NJL. model [4-6], in
our models the chiral restoration critical temperature becomes lower as the external magnetic field
is increased. This is related with the fact that the condensates do not show in general a monotonic



increase with B for a fixed value of the temperature. The situation is illustrated in Fig. 3, where we
show the behavior of the averaged difference AXpr as a function of eB, for T = 0 and for values
of the temperature in the critical region. The curves correspond to models with Gaussian (left) and

Lorentzian (right) form factors, with (—(E]q)(r)eg)” 3 =230 MeV. For these parametrizations the critical

temperatures for B = 0 are slightly below 180 MeV (see Table 1). While for T = 0 the value of AZpq
shows a monotonic growth with the external magnetic field, it is seen that when the temperatures get
closer to the critical values the curves have a maximum and then start to decrease for increasing B.
This is the typical behavior associated to IMC and observed from lattice QCD results, see e.g. Fig. 2
of Ref. [8]. Qualitatively similar results are found for the other parametrizations in Table I. Finally,
in Fig. 4 we plot our results for the chiral restoration critical temperatures 7.(B), normalized to the
corresponding values at vanishing external magnetic field. The figure includes the curves for nonlocal
NJL models with Gaussian (left) and 5-Lorentzian (right) form factors and different parameter sets
(see caption), and the gray bands in both panels show the results obtained in LQCD, taken from
Ref. [8]. From the figure it is clearly seen that the inverse magnetic catalysis effect is observed
for all considered parametrizations. In addition, for a given form factor the effect is found to be
stronger for parameter sets leading to a lower absolute value of the chiral quark condensates. As
a general conclusion, it can be stated that the behavior of the critical temperatures with the external
magnetic field is compatible with LQCD results, for phenomenologically adequate values of the chiral
condensate.
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Figure 3. Subtracted normalized flavor average condensate as a function of eB for different representative
temperatures. Left and right panels correspond to Gaussian and 5-Lorentzian form factors, respectively, with
(—(@9))""* = 230 MeV. Temperature values are given in MeV.

4 Summary & conclusions

We have studied the behavior of strongly interacting matter under a uniform static external magnetic
field in the context of a nonlocal chiral quark model. In this approach, which can be viewed as
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Figure 4. Normalized critical temperatures as functions of eB for various model parametrizations. For compari-
son, LQCD results of Ref. [8] are indicated by the gray band. Left and right panels correspond to Gaussian and
5-Lorentzian form factors, respectively.

an extension of the Polyakov-Nambu-Jona-Lasinio model, the effective couplings between quark-
antiquark currents include nonlocal form factors that regularize ultraviolet divergences in quark loop
integrals and lead to a momentum-dependent effective mass in quark propagators. We have worked
out the formalism introducing Ritus transforms of Dirac fields, which allow to obtain closed analytical
expressions for the gap equations, the chiral quark condensate and the quark propagator.

We have considered the case of Gaussian and Lorentzian form factors, choosing some sets of
model parameters that allow to reproduce the empirical values of the pion mass and decay constants.
At zero temperature, with these parameterizations we have calculated the behavior of the subtracted
flavor average condensate AEB,O and the normalized condensate difference Zg’o - Zé,o as functions of
the external magnetic field B. Our results show the expected effect of magnetic catalysis (conden-
sates behave as growing functions of B), the curves being in quantitative agreement with lattice QCD
calculations with slight dependence on the parametrization.

Finally we have extended the calculations to finite temperature systems, including the couplings
of fermions to the Polyakov loop. We have defined chiral and PL susceptibilities in order to study
the chiral restoration and deconfinement transitions, which turn out to proceed as smooth crossovers
for the considered polynomial PL potential. From our numerical calculations, on one hand it is seen
that, for all considered values of B, both transitions take place at approximately the same temperature,
in agreement with LQCD predictions. On the other hand, it is found that for temperatures close to
the transition region AZ 7 becomes a nonmonotonic funtion of B, which eventually leads to the phe-
nomenon of inverse magnetic catalysis, i.e., a decrease of the critical temperature when the magnetic
field gets increased. This feature is also in qualitative agreement with LQCD expectations. Moreover,
for some parameterizations we find a remarkably good quantitative agreement with the results from
LQCD calculations for the behavior of the normalized critical temperatures with B (see Fig. 4). The
values of the critical temperature at 7 = 0, which show some dependence on the parameterization, lie
also within the range estimated by LQCD results.

It is interesting to compare the nonlocal models with approaches in which IMC is obtained by
considering some dependence of the effective couplings on B and/or T [23, 24]. The naturalness of
the IMC behavior in our framework can be understood by noticing that for a given Landau level the
associated nonlocal form factor turns out to be a function of the external magnetic field, according to



the convolution in Eq. (13). Since the form factors can be identified with some gluon-mediated effec-
tive interaction, the dependence on the magnetic field can be seen as originated by the backreaction
of the quarks on the gluon fields.
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