#### Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab

G.P. Gilfoyle University of Richmond, Richmond, VA 23173

#### Outline

- Scientific Motivation
- 2. Necessary Background
- 3. What We Hope to Learn.
- 4. The Measurements
- 5. Summary and Conclusions



Tlaxcala City

#### Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
  - Nuclear models, constituent quarks,...
  - lattice QCD.
- Map the transition from the hadronic picture to QCD.

#### Scientific Motivation - What We Hope to Learn.

- Nucleon elastic electromagnetic form factors (EEFFs) describe the distribution of charge and magnetization in the nucleon.
- Reveal the internal landscape of the nucleon and nuclei.
- Rigorously test QCD in the non-perturbative regime.
  - Nuclear models, constituent quarks,...
  - lattice QCD.
- Map the transition from the hadronic picture to QCD.

Jefferson Lab has completed the 12 GeV Upgrade which doubled the CEBAF accelerator energy.

#### Some Necessary Background

• EEFFs cross section described with Dirac  $(F_1)$  and Pauli  $(F_2)$  form factors

$$\frac{d\sigma}{d\Omega} = \sigma_{\textit{Mott}} \left[ \left( F_1^2 + \kappa^2 \tau F_2^2 \right) + 2\tau \left( F_1 + \kappa F_2 \right)^2 \tan^2 \left( \frac{\theta_e}{2} \right) \right]$$

where

$$\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta_e}{2})}{4E^3 \sin^4(\frac{\theta_e}{2})}$$

and  $\kappa$  is the anomalous magnetic moment,  $E\left(E'\right)$  is the incoming (outgoing) electron energy,  $\theta$  is the scattered electron angle and  $\tau=Q^2/4M^2$ .

• For convenience use the Sachs form factors.

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{Mott}}{\epsilon(1+\tau)} \left( \epsilon G_E^2 + \tau G_M^2 \right)$$

where

$$G_E = F_1 - \tau F_2$$
 and  $G_M = F_1 + F_2$  and  $\epsilon = \left[1 + 2(1 + \tau)\tan^2\frac{\theta_e}{2}\right]^{-1}$ 

#### Where We Are Now.

- ullet  $G_M^p$  reasonably well known over large  $\mathbf{Q}^2$  range.
- The ratio  $G_E^\rho/G_M^\rho$  from polarization transfer measurements diverged from previous Rosenbluth separations.
  - Two-photon exchange (TPE).
  - Effect of radiative corrections.
- Neutron magnetic FF  $G_M^n$  still follows dipole.
- High- $Q^2$   $G_E^n$  opens up flavor decomposition.







#### Where We Are Now.

- Many years of model building -Vector Meson Dominance, Constituent Quarks capture much of the four EEFFs, but use many parameters.
- Generalized Parton Distributions (GPDs) have also been used. The EEFFs are the first moments of the GPDs.
- EEFFs are an early test of lattice QCD because isovector form does not have disconnected diagrams.





#### Where We Are Going - Dyson-Schwinger Eqs

- Equations of motion of quantum field theory.
  - Infinite set of coupled integral equations.
  - Inherently relativistic, non-perturbative, connected to QCD.
  - Deep connection to confinement, dynamical chiral symmetry breaking.
  - Infinitely many equations, gauge dependent → Choose well!
- Recent results (Cloët et al).
  - Model the nucleon dressed quark propagator as a quark-diquark.
  - Damp the shape of the mass function M(p).





#### Where We Are Going - Dyson-Schwinger Eqs

- Equations of motion of quantum field theory.
  - Infinite set of coupled integral equations.
  - Inherently relativistic, non-perturbative, connected to QCD.
  - Deep connection to confinement, dynamical chiral symmetry breaking.
  - Infinitely many equations, gauge dependent → Choose well!
- Recent results (Cloët et al).
  - Model the nucleon dressed quark propagator as a quark-diquark.
  - Damp the shape of the mass function M(p).





#### Where We Are Going - Dyson-Schwinger Eqs

- Equations of motion of quantum field theory.
  - Infinite set of coupled integral equations.
  - Inherently relativistic, non-perturbative, connected to QCD.
  - Deep connection to confinement, dynamical chiral symmetry breaking.
  - Infinitely many equations, gauge dependent → Choose well!



- Model the nucleon dressed quark propagator as a quark-diquark.
- Damp the shape of the mass function M(p).

Position of zero in  $\mu_p G_E^p/G_M^p$  and  $\mu_n G_E^n/G_M^n$  sensitive to shape of M(p)!





#### Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F^u_{1(2)} = 2F^p_{1(2)} + F^n_{1(2)} \qquad F^d_{1(2)} = 2F^n_{1(2)} + F^p_{1(2)}$$

• Evidence of di-quarks? *d*-quark scattering probes the diquark.



#### Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
  $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$ 

 Evidence of di-quarks? d-quark scattering probes the diquark.





 Agreement with Nambu-Jona-Lasinio model encouraging - no parameter fits to the EEFFs.

#### Where We Are Going - Flavor Decomposition

- With all four EEFFs we can unravel the contributions of the u and d quarks.
- Assume charge symmetry, no s quarks and use (Miller et al. Phys. Rep. 194, 1 (1990))

$$F_{1(2)}^u = 2F_{1(2)}^p + F_{1(2)}^n$$
  $F_{1(2)}^d = 2F_{1(2)}^n + F_{1(2)}^p$ 

 Evidence of di-quarks? d-quark scattering probes the diquark.





 Agreement with Nambu-Jona-Lasinio model encouraging - no parameter fits to the EEFFs.

The JLab program will double our reach in  $Q^2$  to  $\approx 8~GeV^2$ .

# Where We Are Going - Light Front Holographic QCD

- Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- ② Recent paper by Sufian *et al.* (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components  $|qqqq\overline{q}\rangle$ .
- 3 Obtain good agreement with all the form factor data with only three parameters, e.g.  $\mu_n G_F^n/G_M^n$ .



# Where We Are Going - Light Front Holographic QCD

- Based on connections between light-front dynamics, it's holographic mapping to anti-de Sitter space, and conformal quantum mechanics.
- 2 Recent paper by Sufian *et al.* (Phys. Rev. D95, 01411 (2017)) included calculations of the electromagnetic form factors that include higher order Fock components  $|qqqq\overline{q}\rangle$ .
- **3** Obtain good agreement with all the form factor data with only three parameters, e.g.  $\mu_n G_F^n/G_M^n$ .





Major difference with DSE approach!

#### Where We Are Going - New Experiments

The JLab Lineup

| Quantity      | Method                | Target                | $Q^2(GeV^2)$ | Hall | Beam Days |
|---------------|-----------------------|-----------------------|--------------|------|-----------|
| $G_M^p$ *     | Elastic scattering    | $LH_2$                | 7 - 15.5     | Α    | 24        |
| $G_E^p/G_M^p$ | Polarization transfer | $LH_2$                | 5 - 12       | Α    | 45        |
| $G_M^n$       | E - p/e - n ratio     | $LD_2-LH_2$           | 3.5 - 13.0   | В    | 30        |
| $G_M^n$       | E - p/e - n ratio     | $LD_2, LH_2$          | 3.5 - 13.5   | Α    | 25        |
| $G_E^n/G_M^n$ | Double polarization   | polarized $^3{ m He}$ | 5 - 8        | Α    | 50        |
|               | asymmetry             |                       |              |      |           |
| $G_E^n/G_M^n$ | Polarization transfer | $LD_2$                | 4 - 7        | C    | 50        |
| $G_E^n/G_M^n$ | Polarization transfer | $LD_2$                | 4.5          | Α    | 5         |

<sup>\*</sup> Data collection is complete.

PAC approval for 229 days of running in the first five years.

All experiments build on successful ones from the 6-GeV era.

#### How We Will Get There: Jefferson Lab







Continuous Electron Beam Accelerator Facility (CEBAF)

- Superconducting Electron Accelerator (currently 338 cavities), 100% duty cycle.
- $E_{max}=11~{
  m GeV}$  (Halls A, B, and C) and 12 GeV (Hall D),  $\Delta E/E\approx 2\times 10^{-4}$ ,  $I_{summed}\approx 90~\mu A$ ,  $P_e\geq 80\%$ .

#### The Experiments - New Detectors



Hall A - High Resolution Spectrometer (HRS) pair, SuperBigBite (SBS), neutron detector, and specialized installation experiments



Hall C - New Super High Momentum Spectrometer to paired with the existing High Momentum Spectrometer.



Hall B - CLAS12 large acceptance spectrometer operating at high luminosity with toroid (forward detector) and solenoid (central detector).

Hall D - A new large acceptance detector based on a solenoid magnet for photon beams is under construction.



## Proton Magnetic Form Factor - $G_M^p$

- E12-07-108 in Hall A (Gilad, Moffitt, Wojtsekhowski, Arrington).
- Precise measurement of ep elastic cross section and extract  $G_M^p$ .
- Both HRSs in electron mode.
- Beamtime: 24 days.
- $Q^2 = 7.0 15.5 \text{ GeV}^2$  (1.0, 1.5  $\text{GeV}^2$  steps).
- Significant reduction in uncertainties:

|                | $d\sigma/d\Omega$ | $G_M^p$ |
|----------------|-------------------|---------|
| Point-to-Point | 1.0-1.3           | 0.5-0.6 |
| Normalization  | 1.0-1.3           | 0.5-0.6 |
| Theory         | 1.0-2.0           | 0.5-1.0 |

- Two-Photon Exchange is a major source of uncertainty  $\to$  vary  $\epsilon$  to constrain.
- Sets the scale of other EEFFs.
- Completed data collection this year.



JLab E012-07-108, e-p elastic cross section



E. Christy, Hall A Summer Meeting 2017

## Proton Form Factor Ratio $G_F^p/G_M^p$

- E12-07-109 (GEp(5)) in Hall A (Brash, Jones, Perdrisat, Pentchev, Cisbani, Punjabi, Khandaker, Wojtsekhowski).
- Polarization transfer using  $H(\vec{e}, e'\vec{p})$ :

$$\frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: EM calorimeter (BigCal).
- Proton arm: new, large-acceptance magnetic spectrometer (SBS) with double polarimeter, and hadron calorimeter.
- Beamtime: 45 days.
- Kinematics and Uncertainties:

| $Q^2 (GeV^2)$          | 5.0   | 8.0   | 12.0  |
|------------------------|-------|-------|-------|
| $\Delta [\mu G_E/G_m]$ | 0.025 | 0.031 | 0.069 |

- Rated high impact by JLab PAC.
- Running expected in 3-4 years.

Proton form factors ratio, GEp(5) (E12-07-109)





### Neutron Magnetic Form Factor $G_M^n$ - 1

- E12-07-104 in Hall B (Gilfoyle, Hafidi, Brooks).
- Ratio Method on Deuterium:

$$\begin{split} R &= \frac{\frac{d\sigma}{d\Omega}[^{2}\mathrm{H}(e,e'n)_{QE}]}{\frac{d\sigma}{d\Omega}[^{2}\mathrm{H}(e,e'p)_{QE}]} \\ &= a \times \frac{\sigma_{Mott}\left(\frac{(G_{E}^{n})^{2} + \tau(G_{M}^{n})^{2}}{1+\tau} + 2\tau\tan^{2}\frac{\theta_{e}}{2}(G_{M}^{n})^{2}\right)}{\frac{d\sigma}{d\Omega}[^{1}\mathrm{H}(e,e')p]} \end{split}$$

where a is nuclear correction.

- Precise neutron detection efficiency needed to keep systematics low.
  - tagged neutrons from  $p(e, e'\pi^+n)$ .
  - Dual  $LD_2 LH_2$  target.
- Kinematics:  $Q^2 = 3.5 13.0 \text{ (GeV/c)}^2$ .
- Beamtime: 30 days.
- $\bullet \ \, \text{Systematic uncertainties} < \ \, 2.5\% \ \, \text{across} \\ \text{full} \ \, Q^2 \ \, \text{range}.$
- Running expected in 2019.





## Neutron Magnetic Form Factor $G_M^n$ - 2

- E12-09-019 in Hall A (Quinn, Wojtsekhowski, Gilman).
- Ratio Method on Deuterium as in Hall B:  $R = \frac{d\sigma}{d\Omega} [^{2} H(e, e'n)_{QE}] / \frac{d\sigma}{d\Omega} [^{2} H(e, e'p)_{QE}]$
- Electron arm: SuperBigBite spectrometer.
- Hadron arm: hadron calorimeter (HCal).
- Neutron detection efficiency:
  - Use  $p(\gamma, \pi^+)n$  for tagged neutrons.
  - End-point method.
- Kinematics:  $Q^2 = 3.5 13.5 \, (GeV/c)^2$ .
- Beamtime: 25 days.
- Systematic uncertainties < 2.1%.
- Two  $G_M^n$  measurements 'allow a better control for the systematic error' (PAC34).
- Expected in next 2-3 years.





#### Neutron Form Factor Ratio $G_F^n/G_M^n$ - 1

- E12-09-016 in Hall A (Cates, Wojtsekhowski, Riordan).
- Double Polarization Asymmetry: Get  $A_{en}^{V}$  from  ${}^{3}\vec{\mathrm{He}}(\vec{e},e'n)pp$ .
- Longitudinally polarized electron beam.
- <sup>3</sup>He target polarized perpendicular to the momentum transfer.
- Electron arm: Super BigBite spectrometer.
- Neutron arm: hadron calorimeter HCal (overlap with GEp(5) and Hall A  $G_M^n$ ).
- Beamtime: 50 days.
- Kinematics and Uncertainties:

| $Q^2 (GeV^2)$                                                                                                                       | 5.0   | 6.8   | 8.0   |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| $\Delta \left[ \frac{\mu G_E}{G_M} \right]_{stat}$                                                                                  | 0.027 | 0.022 | 0.032 |
| $\Delta \begin{bmatrix} \frac{\mu G_E}{G_M} \end{bmatrix}_{stat}$ $\Delta \begin{bmatrix} \frac{\mu G_E}{G_M} \end{bmatrix}_{syst}$ | 0.018 | 0.021 | 0.013 |
|                                                                                                                                     |       |       |       |

Expected in next 3-4 years.





#### Neutron Form Factor Ratio $G_F^n/G_M^n$ - 2

- E12-11-009 in Hall C (Sawatzky, Arrington, Kohl, Semenov).
- Polarization transfer using  ${}^{2}H(\vec{e}, e'\vec{n})p$ :

$$\frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: Super High Momentum Spectrometer (SHMS).
- Neutron arm: neutron polarimeter with tapered-gap neutron-spin-precession magnet and proton recoil detection.
- Kinematics:  $Q^2 = 3.95, 6.88 \, (\text{GeV/c})^2$ .
- Beamtime: 50 days.
- Systematic uncertainties about 2-3%.
- Statistical uncertainties about 10-16%.
- Complementary to the <sup>3</sup>He experiment.
- Expected after 2020.





#### Neutron Form Factor Ratio $G_F^n/G_M^n$ - 3

- E12-17-004 in Hall A (Annand, Bellini, Kohl, Psikunov, Sawatzky, Wojtsekhowski).
- Polarization transfer using  ${}^{2}H(\vec{e}, e'\vec{n})p$ :

$$\frac{G_E^n}{G_M^n} = -\frac{P_t}{P_l} \frac{E + E'}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

- Electron arm: Super Big Bite Spectrometer.
- Neutron arm: HCal, neutron polarimeter, CDet coordinate detector, scintillation counter.
- Kinematics:  $Q^2 = 4.5 \; (GeV/c)^2$ .
- Beamtime: 5 days.
- Systematic uncertainties about 3%.
- Statistical uncertainties about 8%.
- Will test extension of neutron polarimetry to high  $\mathrm{Q}^2$ .
- Expected in the next 2-3 years.





### **Summary and Conclusions**

- Large gains over the last decade in physics understanding of the EEFFs built on new technologies and capabilities.
- Major changes in our understanding of nucleon structure.
- At JLab we have begun a broad assault on the EEFFs and will significantly expand the physics reach of our understanding.
- Discovery potential in mapping out nucleon structure and understanding QCD.

## Additional Slides

#### **Beyond Elastic Form Factor Measurements**

Additional form factor studies after the 12 GeV Upgrade.

| Experiment  | Spokesperson | Title                                                              | Hall | Beamtime |
|-------------|--------------|--------------------------------------------------------------------|------|----------|
| PR12-06-101 | G. Huber     | Measurement of the charged pion form factor to high $\mathrm{Q}^2$ | С    | 52 days  |
| PR12-09-003 | R. Gothe     | Nucleon resonance studies with CLAS12                              | В    | 40 days  |

#### **High-Impact Experiments from JLab PAC**

| PRC Style  PAC41 "High Impact" Selection  Selection dependently impact Presented on dependent high impact Presented on dependent of high impact state  Green - Sackage regit  Green - Sackage regit |                                                                                                                                               |         |                              |                           |              |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|--------------|--------------------------------------------------------------------------------------------------|
| Exp#                                                                                                                                                                                                | Exp name                                                                                                                                      | Hall    | Run<br>Group/<br>Days        | PAC Days                  | PAC<br>grade | Comments                                                                                         |
|                                                                                                                                                                                                     |                                                                                                                                               | TOPIC 1 | : SPEC                       | TROSCOPY                  |              |                                                                                                  |
| E12-06-102                                                                                                                                                                                          | GlueX : Mapping the Spectrum of Light Quark Mesons and Gluonic<br>Exclusions with Linearly Polarized Photons                                  | D       |                              | (120) approved            | A            | CheX - assumed half commissioning half physics  + plus (30) commissioning days                   |
| TOPIC 2 : FORM FACTORS                                                                                                                                                                              |                                                                                                                                               |         |                              |                           |              |                                                                                                  |
| E12-06-101                                                                                                                                                                                          | Measurement of the Charged Pion Form Factor to High Q2                                                                                        | С       |                              | 52                        | A            | Requires fully commissioned SHMS                                                                 |
| 12-07-109                                                                                                                                                                                           | OEp/OMp : Large Acceptance Proton Form Factor Ratio Meas's at<br>13 and 15 (Gel/Ic)2 Using Recoil Polarization Method                         | А       |                              | 45                        | A.           | Requires SBS and high power cryo target                                                          |
| 12-11-106                                                                                                                                                                                           | High Precision Measurement of the Proton Charge Radius                                                                                        | В       |                              | 15                        | A            | Non-CLAS12 experiment, Prad                                                                      |
|                                                                                                                                                                                                     |                                                                                                                                               | T       | OPIC 3 :                     | PDFs                      |              |                                                                                                  |
| 12-06-113                                                                                                                                                                                           | BONUS: The Structure of the Free Neutron at Large » Bjorken                                                                                   | В       | F/40                         | (40) approved<br>*21<br>↓ | A            | Requires BONAS Radial TPC opgrade<br>±42 days High Impact for the experiment                     |
| 12-10-103                                                                                                                                                                                           | MARATHON: Measurement of the F2nF2p, div Ratios and A+3<br>EMC Effect in DIS off the Tritium and Helium Mirror Nuclei                         | A       | Tritum<br>target<br>group/61 | 1<br>*21<br>(42) approved | A            | that runs first; experiments are equally important & both are essential                          |
| 12-08-110                                                                                                                                                                                           | A1n HallC-3He: Meas of Neutron Spin Asymmetry A1n in the<br>Valence Quark Region Using an 11 GeV Beam and a Polarized 3He<br>Target in Hall C | с       |                              | 36                        | A            | Requires high luminosity 3He                                                                     |
|                                                                                                                                                                                                     |                                                                                                                                               | то      | PIC 4T :                     |                           |              |                                                                                                  |
| 212-11-111                                                                                                                                                                                          | TMD CLAS-HDIce : SIDIS on Transverse polarized target                                                                                         | В       | G/110                        | 110<br>concurrent         | A            | Requires transversely polarized HDlice with electron beam                                        |
| C12-12-009                                                                                                                                                                                          | Dihadron CLAS-HDIce: Measurement of transversity with<br>shadron production in SDIS with transversely polarized target.                       | В       | G/110                        | (110)<br>concurrent       | A            | Requires transversely polarized HDlice with electron beams<br>C1 Proposal                        |
| 12-06-112                                                                                                                                                                                           | TMD CLAS-H(Unpol): Probing the Protor's Quark Dynamics in<br>Semi-Inclusive Pion Production at 12 GeV                                         | В       | A/139                        | (60) approved<br>★10      | A            | Hall B commissioning = 10 days<br>*plus (50) commissioning days                                  |
|                                                                                                                                                                                                     |                                                                                                                                               | то      | PIC 46 :                     | GPDs                      |              |                                                                                                  |
| 12-06-114                                                                                                                                                                                           | DVCS HallA-H(UU,LU): Measurements of Electron-Helicity Dependent Cross Sections of DVCS with CEBAF at 12 GeV                                  | A       | Early:<br>DVCS &<br>GMp/62   | (100) approved<br>★70     | A            | Hall A commissioning                                                                             |
| 12-12-010                                                                                                                                                                                           | DVCS CLAS-HDIce : DVCS at 11 GeV with transversely<br>polarized target using the CLAS12 Detector                                              | В       | G/110                        | (110)<br>concurrent       | A            | Requires transversely polarized HDlice with electron beam<br>C1 Proposal                         |
| 12-11-003                                                                                                                                                                                           | DVCS CLAS-D(UU,LU): DVCS on the Neutron with CLAS12 at<br>11 GeV                                                                              | В       | B/90                         | (90) approved             | A            | Requires D target; central neutron detector ready in 2016<br>*Backup GPD-E meas if HDIce delayed |
|                                                                                                                                                                                                     |                                                                                                                                               | TOP     | IC 5 : NI                    | JCLEAR                    |              |                                                                                                  |
| 12-13-005                                                                                                                                                                                           | Bubble Chamber: Measurement of 160(f, a) 120 with a<br>bubblechamber and a bremsstrahlung beam                                                | INJ     |                              | 14                        | A-           | Our guess: 2017                                                                                  |
| 12-11-101                                                                                                                                                                                           | PREx-II: Precision Parity-Violating Measurement of the Neutron Skin<br>of Lead                                                                | А       |                              | 35                        | A            | Requires septum, Pb target, 1% Moller polarimetry                                                |
| 12-06-106                                                                                                                                                                                           | SRC-hiX: Inclusive Scattering from Nuclei at \$x > 1\$ in the<br>quasiellastic and deeply inelastic regimes                                   | С       |                              | 32                        | A.           |                                                                                                  |
| 12-11-112                                                                                                                                                                                           | SRC-Tritium: Precision measurement of the isospin dependence<br>in the 2N and 3N short range correlation region                               | A       | Tritum<br>target<br>group/61 | 19                        | A            |                                                                                                  |
| TOPIC 6: FUNDAMENTAL SYMMETRIES                                                                                                                                                                     |                                                                                                                                               |         |                              |                           |              |                                                                                                  |
| 12-11-006                                                                                                                                                                                           | HPS: Status of the Heavy Photon Search Experiment at Jefferson<br>Laboratory (Update on PR12_11_006)                                          | В       | H/180                        | (155) approved<br>*39     | A            | non-CLAS12 experiment, HPS<br>*25 pre-CLAS engr + 14 physics @ 4.4 GeV                           |
| 12-13-009                                                                                                                                                                                           | APEX : Search for new Vector Boson A1 Decaying to exe-                                                                                        | A       |                              | 34                        | A            | Requires new septum and target system                                                            |