

### Hadron Spectroscopy Studies at Belle II

XLVII International Symposium on Multiparticle Dynamics, Tlaxcala, Mexico Nils Braun for the Belle II Collaboration | 12.09.2017

ETP - KARLSRUHE INSTITUTE OF TECHNOLOGY



### Quarkonium and Quarkonium-like states



### Quarkonium



### Theory models for Quarkonium-like/Exotic States



### Quarkonium and Quarkonium-like states



#### charmonium(like)

#### bottomonium(like)



# Starting from the discovery of X(3872) in 2003, more than 20 exotic states have been reported!

Hadron Spectroscopy Studies at Belle II - Nils Braun

3/28

### Introduction to Belle II

### Belle - A success story



- KEKB was an electron-positron collider at KEK in Tsukuba/Japan which studied the decay of B mesons at the  $\Upsilon(4S)$  resonance
- It had a large physics program, including:
  - Measurements of CKM matrix elements and angles of the unitarity triangle
  - Observation of direct CP violation in B decays
  - Measurements of rare decay modes
  - Searches for rare au decays
  - Discovery of exotic hadrons including charged charmonium- and bottomonium-like states



Hadron Spectroscopy Studies at Belle II - Nils Braun

### From Belle to Belle II



|                                                     | KEKB         | Super KEKB         |
|-----------------------------------------------------|--------------|--------------------|
| Instantaneous Luminosity                            | 2            | 80                 |
| in 10 $	imes$ 10 <sup>34</sup> cm $^{-2}$ s $^{-1}$ |              |                    |
| Integrated Luminosity in $ab^{-1}$                  | 1            | 50                 |
| Runtime                                             | 1998 to 2010 | start in 2018      |
| Detector                                            | Belle        | Belle II           |
| Raw Data                                            | 1 PB         | 100 PB (projected) |

#### Higher precision – wider range of topologies – better spectroscopy

- Higher luminosity also leads to a higher background ⇒ need for better detector, better trigger, better software reconstruction
- World-wide collaboration is working on the upgrade (681 scientists from 100 institutes in more than 20 countries)

### **Belle II Detector**







First beam test for the innermost tracking detectors at DESY, Germany.









# First cosmic events reconstructed with CDC





### Belle II Commissioning and Early Physics Opportunities



- BEAST Phase I completed Feb-June 2016: SuperKEKB commissioning to characterize the beam environment
- Phase II Early 2018:
  - Belle II without the inner silicon-based VXD tracking system
  - Characterize background radiation the innermost tracking system is exposed to
  - $\bullet\,$  Estimated duration  $\sim$  5 month and recording of 20 40 fb^{-1} at various energies
  - First months will be commissioning data to test the sub-detectors and to study the machine background
- Phase III Beginning 2019:
  - Start of data taking with the complete Belle II detector
  - Primary running at  $\Upsilon(4S)$  for B-pair production

| Experiment | Scans     | $\Upsilon(6S)$ | $\Upsilon(5$  | S)       | $\Upsilon(4)$ | (1S)     | $\Upsilon(3$ | SS       | $\Upsilon(2$  | (S)      | $\Upsilon(1$  | S        |
|------------|-----------|----------------|---------------|----------|---------------|----------|--------------|----------|---------------|----------|---------------|----------|
|            | Off. Res. | $fb^{-1}$      | $\rm fb^{-1}$ | $10^{6}$ | $\rm fb^{-1}$ | $10^{6}$ | $fb^{-1}$    | $10^{6}$ | $\rm fb^{-1}$ | $10^{6}$ | $\rm fb^{-1}$ | $10^{6}$ |
| CLEO       | 17.1      | -              | 0.1           | 0.4      | 16            | 17.1     | 1.2          | 5        | 1.2           | 10       | 1.2           | 21       |
| BaBar      | 54        | R              | $_{b}$ scan   |          | 433           | 471      | 30           | 122      | 14            | 99       | -             |          |
| Belle      | 100       | $\sim 5.5$     | 36            | 121      | 711           | 772      | 3            | 12       | 25            | 158      | 6             | 102      |

### Quarkonium and Quarkonium-like states



### bottomonium(like)





### Hadron Spectroscopy at Belle II

### Belle - Another success story



- The series of discoveries started with the observation of the  $\eta'_c$  meson in  $B \to K \eta'_c$  decays.
- $\blacksquare$  The first exotic state was X(3872) again found in  ${\rm B} \to {\rm KX}(3872)$  decays





### Belle - Another success story continued





### Why Hadron Spectroscopy at Belle II?



Unique capabilities of B factories:

- Exactly two B mesons produced (at  $\Upsilon(4S)$ )
- Good reconstruction of  $\gamma$ ,  $\pi^0$
- Can reconstruct one resonance, look for the recoiling system (e.g.  $e^+e^- \rightarrow J/\psi + X$ )
- Variety of different production channels
- High resolution, large solid angle spectrometer with particle identification capability makes reconstruction of many decay modes possible.

# Production of Quarkonium at $e^+e^-$ colliders





# Analysis techniques for Quarkonium searches - selection

With X(3872) as an example

Event reconstruction and selection

- ${\rm B}^{\pm} \rightarrow {\rm K}^{\pm}\pi^{+}\pi^{-}{\rm J}/\psi$ 
  - e.g. require two oppositely charged leptons with certain invariant mass

 $3.076 < \textit{M}_{\ell^+\ell^-} < 3.116\,{\rm GeV}$ 

Reconstruct B mesons: Very helpful variables

$$egin{aligned} |\Delta E| &= |E_{
m B}^{
m cms} - E_{
m beam}^{
m cms}| \ M_{
m bc} &= \sqrt{\left(E_{
m beam}^{
m cms}
ight)^2 - \left(p_{
m B}^{
m cms}
ight)^2} \end{aligned}$$

Similar without B mesons.

 Background sources: other decays, continuum, combinatorics, beam-induced background

Hadron Spectroscopy Studies at Belle II - Nils Braun

17/28





# Analysis techniques for Quarkonium studies



Extract information on state, e.g.

- Look at mass distributions  $M(\pi^+\pi^-\ell^+\ell^-) - M(\ell^+\ell^-)$  c recoil mass (e.g. of J/ $\psi$ )
- Extract mass, width, significance
- Dalitz analysis and fit
- Full angular analysis



2.5

M<sup>2</sup>(K'π\*), GeV<sup>2</sup>/c<sup>4</sup>

collaboration),

PRD 80, 03114

### Overview of the possible studies -Charmonium(-like)



Large amounts of data is needed (> 1  $ab^{-1}$ ) to be competitive to already performed studies  $\Rightarrow$  only for phase III.



Effective luminosities at low energies by ISR in Belle and Belle II  $\Upsilon(4S)$  runs.

- total amplitude analyses of the three-body decays of charged charmonium-like states (Z<sup>+</sup>) in B-decays.
- new exotic vector states (Y), fit for resonance parameters in initial-state radiation.
- Understand "non-standard" decay properties above the open-charm threshold of standard charmonium ( $\psi(4040), \psi(4160)$ )
- Y(4140) and Y(4274)

### Overview of the possible studies

# Interesting and promising examples for bottomonium:

- $\Upsilon(6S)$  beam energy:
  - Understand ↑(6S) → Z<sub>b</sub> states (molecular state? partners?)
  - bottomonium discovery (h<sub>b</sub>(3P), Υ(2D))
  - sign of a Y<sub>b</sub> state?
- $\Upsilon(3S)$  beam energy:
  - conventional bottomonium physics:  $\Upsilon(1^3D_J)$  triplet,  $\eta_b(1S, 2S)$
  - Hindered radiative transitions
  - dipion transitions
  - invisible decays





## Three out of many possible Analyses at Belle II

### $\eta$ transitions



### $\eta$ transitions are always violating the Heavy Quark Spin Symmetry

$$\frac{B[\Upsilon(nS) \to \eta \Upsilon(mS)]}{B[\Upsilon(nS) \to \pi \pi \Upsilon(mS)]} \approx \frac{\Lambda_{\rm QCD}^2}{m_b^2} \approx 10^{-3}$$

 $\Upsilon(5S) \rightarrow \eta \Upsilon(mS)$ 

(Belle, preliminary)

 $\Upsilon(5S) \rightarrow \pi \pi \Upsilon(mS)$ 

(Belle, Phys. Rev. Lett. 108, 032001)



### $\eta$ transitions from $\Upsilon(6S)$



Selection algorithm:

- Reconstruct event and photons, look for  $\eta \rightarrow \gamma \gamma$  only  $\varepsilon = 58.0\%$
- 2 Cut on event topology (e.g. number of tracks > 3)  $\varepsilon = 52.4\%$
- 3 Veto on  $\pi^0$   $\varepsilon = 33.1\%$
- Kinematic fit on invariant mass



 $\Upsilon(3S) 
ightarrow \pi \pi h_b(1P)$ 



- Current limit on branching fraction of < 1.2 × 10<sup>-4</sup> challenges most theoretical models.
- Search using the invariant mass recoiling against the π<sup>+</sup>π<sup>-</sup> system (only possible at B-factories!)
- Great improvement possible because of better resolution of Belle II (compared to Belle and BaBar)





### Search for partner states of $Z_b(10610)^0$

- $Z_b(10610)^0 \rightarrow \Upsilon(2S)\pi^0\pi^0$  was seen with 6.5  $\sigma$  significance (PhysRev D 88, 052016).
- Theory models may imply partners, which decay into χ<sub>bJ</sub> (S. Ohkoda et al., PRD 86, 014004 (2012)).
- Higher statistics needed, because signal yield is much lower ( $\gamma$  efficiency and Br( $\chi_{bJ} \rightarrow \Upsilon(1S, 2S, 3D)\gamma$ ) are multiplied).







- The large data sample of Belle II will have a large impact on (exotic) quarkonium physics.
- Phase II with a partial detector will start soon.
- Hopefully, a deeper understanding on the origin of exotic states will be possible soon.

### Stay tuned!

### Thank you for your attention

### Bibliography



- The Physics Prospects for Belle II unpublished.
- Belle II and hadron spectroscopy, Peter Križan, EXA 2014
- Belle II Early Physics Program of Bottomonia Spectroscopy and Dark Sector Searches, *Thomas Hauth*, Workshop on Deep Inelastic Scattering 2016
- News from Belle, Marko Bračko, Bled Workshop: Dressing Hadrons 2010
- Studies of quarkonium at Belle and Belle II, Bryan Fulsom, APS DPF 2017
- Belle II status and prospects for exotic hadron spectroscopy, *Pavel Krokovny*, QCD 2017
- Inclusive  $\eta$  transitions from  $\Upsilon(6S)$ , Umberto Tamponi
- Mesons and Tetraquarks, Umberto Tamponi, NPQCD 2017
- Bottomonium Physics with the first ab<sup>-1</sup>, Umberto Tamponi, 4th B2TiP
- A new hadron spectroscopy, Stephen Lars Olsen, arXiv:1411.7738
- Dalitz analysis of  ${
  m B} 
  ightarrow {
  m K} \pi^+ \psi'$  decays and the  $Z(4430)^+$ , arXiv:0905.2869
- Heavy flavored hadron spectroscopy at Belle and prospect, Kenkichi Miyabayashi, EINN 2015

# Backup

### **Tracking Detectors**



|                        |                           | PXD<br>CSVD                                                                                                                            |         |                                                                                     |
|------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------|
| Component<br>Beam pine | Type                      | CDC                                                                                                                                    | Readout | Performance                                                                         |
| beam pipe              | double-wall               | $10 \ \mu m$ Au, 0.6 mm Be,<br>1 mm coolant (paraffin), 0.4 mm Be                                                                      |         |                                                                                     |
| PXD                    | Silicon pixel<br>(DEPFET) | Sensor size: $15 \times 100$ (120) mm <sup>2</sup><br>pixel size: $50 \times 50$ (75) $\mu$ m <sup>2</sup><br>2 layers: 8 (12) sensors | 10 M    | impact parameter resolution<br>$\sigma_{z_0} \sim 20 \ \mu { m m}$<br>(PXD and SVD) |
| OT TD                  | D 11 11                   |                                                                                                                                        | 0.15.1  |                                                                                     |

|     | (DEPFET)                      | pixel size: $50 \times 50$ (75) $\mu m^2$<br>2 layers: 8 (12) sensors                                                |       | $\sigma_{z_0} \sim 20 \ \mu \text{m}$<br>(PXD and SVD)                                                                                                                                                                                        |
|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVD | Double sided<br>Silicon strip | Sensors: rectangular and trapezoidal<br>Strip pitch: 50(p)/160(n) - 75(p)/240(n) μm<br>4 layers: 16/30/56/85 sensors | 245 k | _                                                                                                                                                                                                                                             |
| CDC | Small cell<br>drift chamber   | 56 layers, 32 axial, 24 stereo<br>r = 16 - 112  cm<br>$- 83 \le z \le 159 \text{ cm}$                                | 14 k  | $ \begin{array}{l} \sigma_{r\phi} = 100 \ \mu {\rm m}, \ \sigma_z = 2 \ {\rm mm} \\ \sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2} \\ \sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2} \ ({\rm with \ SVD}) \end{array} $ |

Hadron Spectroscopy Studies at Belle II - Nils Braun

CDC







TOP





Hadron Spectroscopy Studies at Belle II - Nils Braun

### ARICH





• Use two aerogel layers in focusing configuration to increase n. of photons without resolution degradation

$$n_1 = 1.045, n_2 = 1.055$$



### Why Hadron Spectroscopy?



- Large hierarchy of the physical scales makes heavy quarkonium very interesting
  - $m > \Lambda_{\text{QCD}}$
  - heavy-quark bound-state velocity  $v \ll 1$
  - mass *m*, relative momentum *p* ~ *mv* and binding energy *E* ~ *mv*<sup>2</sup> all at different scales
- In pertubative calculations: different scales get entangled. In lattice calculations: requirements on lattice spacing and size are difficult to met
- Ideal test environment for interplay between pertubative and non-pertubative QCD
- Large mass of quarkonium makes it suitable for probing BSM models in decays

### Some Theory Explanations



- Meson Molecules: Weakly bound state of two mesons
- "Tetraquarks": Color-singlet diquarks bound directly by strong force





- Other exotica:
  - Hybrids: quarkonium with bound excited gluon
  - Hadroquarkonium: qq-light hadron interaction
- Nothing special:

Kinematic effects / standard quarkonium





### Detector and Reconstruction Performance Phase II



- Due to missing VXD system: lower tracking efficiency and resolution, especially for particles < 500 MeV</li>
- The CDC tracking system will be fully installed and provide sufficient hits for high-pt tracks
- Particle identification systems and ECL are not affected by the missing VXD system



Hadron Spectroscopy Studies at Belle II - Nils Braun

36/28