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Abstract. We discuss a non-perturbativeT -matrix approach to investigate the micro-
scopic structure of the quark-gluon plasma (QGP). Utilizing an effective Hamiltonian
which includes both light- and heavy-parton degrees of freedoms. Thebasic two-body
interaction includes color-Coulomb and confining contributions in all available color
channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The
in-mediumT -matrices and parton spectral functions are computed selfconsistently with
full account of off-shell properties encoded in large scattering widths. We apply theT -
matrices to calculate the equation of state (EoS) for the QGP, including a ladder resum-
mation of the Luttinger-Ward functional using a matrix-log technique to account for the
dynamical formation of bound states. It turns out that the latter become the dominant de-
grees of freedom in the EoS at low QGP temperatures indicating a transition from parton
to hadron degrees of freedom. The calculated spectral properties ofone- and two-body
states confirm this picture, where large parton scattering rates dissolve theparton quasi-
particle structures while broad resonances start to form as the pseudocritical temperature
is approached from above. Further calculations of transport coefficients reveal a small
viscosity and heavy-quark diffusion coefficient.

1 Introduction

The theoretical study of the QCD phase diagram poses formidable challenges due to the strong force
between quarks and gluons at intermediate and large distances. The QCD phase structure is believed
to be tightly connected to two key phenomena of the standard model, namely hadronic mass gener-
ation and color confinement. In addition, it turned out that the strongly interacting fireball medium
formed in ultra relativistic collisions of heavy nuclei possesses the smallest known ratio of viscosity
to entropy density, giving rise to the notion of the stronglycoupled quark-gluon plasma (sQGP) [1–
3], a near-perfect liquid. The microscopic structure of thesQGP, including its prevalent degrees of
freedom and its possible relation to the nearby phase transition(s) into hadronic matter, remains a
forefront topic in contemporary research. In addition to the low viscosity inferred from fluid-dynamic
models for the bulk evolution of the medium in heavy-ion collisions at RHIC and the LHC, the large
modifications observed for the spectra and elliptic flow of heavy-flavor hadrons [4] have provided a
more direct evidence of a frequent rescattering that (heavy) quarks undergo throughout the expansion

⋆e-mail: lshphy@gmail.com
⋆⋆e-mail: rapp@comp.tamu.edu



10-11

10-10

10-9

10-8

10-7

10-6

10-5

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

In-In→ µ+µ−+X

Ti=235 MeV
Tc=170 MeV

D
im

uo
n 

Y
ie

ld
 d

N µ
µ/

dM
µµ

 [(
20

 M
eV

)-1
]

Dimuon Invariant Mass Mµµ (GeV/c2)

NA60 Data
hadronic

QGP
total thermal

Figure 1. Dimuon excess spectra (after subtraction of background and the final-state hadron decay cocktail) [7]
compared to theoretical calculations of thermal radiation from an expanding fireball with contributions from the
QGP and hadronic phase with in-mediumρ andω spectral functions; figure taken from Ref. [10].

of the nuclear fireball. At the same time, dilepton invariant-mass spectra emanating from the thermal
radiation of the hot system [5–7] have revealed that theρ-meson resonance peak, which dominates
in the low-mass part of the electromagnetic spectral function in vacuum, melts due to strong rescat-
tering in hot and dense hadronic matter [8], cf. Fig. 1. While this melting provides a signature of
chiral symmetry restoration [9], it is also suggestive for atransition in the degrees of freedom in the
medium, from well-defined hadronic states into a quasi-continuum of partons. The challenge remains
how this melting can be seamlessly connected to a quark-gluon based description on the QGP side of
the medium.

A microscopic description of the sQGP is generally expectedto require nonperturbative ingre-
dients, in terms of both the underlying interaction (beyondColor-Coulomb) and resummations of
diagrams. The vicinity of the sQGP to the phase transition into hadrons suggests that (remnants of)
a confining force and the emergence of bound states play an essential role. Computations of the
heavy-quark (HQ) free energy in lattice QCD show that its long-distance limit stays above zero until
temperatures of about 450 MeV [11], supporting to the presence of non-Coulombic contributions (the
leading Coulombic contribution is negative). To capture these aspects, we have developed a thermo-
dynamicT -matrix approach which resums the ladder series of an in-medium interaction kernel that
includes the screened Coulomb and confining forces to characterize the interaction strength between
the partons in the QGP, and allows for the dynamical formation of bound and resonance states. It
provides a uniform treatment of light and heavy partons, canbe constrained by pertinent results from
lQCD and enables the calculation of spectral functions and transport coefficients for applications to
heavy-ion phenomenology. We will briefly review the selfconsistentT -matrix approach in Sec. 2, dis-
cuss the lattice-QCD (lQCD) constraints on the underlying potential in Sec. 3, compute the equation
of state (EoS) in Sec. 4, and evaluate the emerging spectral and transport properties in Secs. 5 and 6,
respectively. Section 7 contains our conclusions and outlook.
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Figure 2. T -matrix resummation of ladder diagrams.

2 T -matrix approach

We start from an effective in-medium parton Hamiltonian,

H =
∑

ε(p)ψ†(p)ψ(p) +
1
2
ψ†(

P
2
− p)ψ†(

P
2
+ p)Vψ(

P
2
+ p′)ψ(

P
2
− p′) , (1)

with single-particle energiesε(p) =
√

M2 + p2 containing the bare parton masses,Mi and a 2-body
interaction kernel,V, wherep,p′ andP denote the relative and total momenta of the pair. The sum
is over momentum, spin, color, and particle species (3 light-quark flavors, gluons, charm and bottom
quarks). Summing up the ladder diagrams generated from thisHamiltonian, we obtain theT -matrix
equation [12–14],

T (z,p,p′) = V(p,p′) +
∫ ∞

−∞

d3k
(2π)3

V(p,k)G0
(2)(z,k)T (z,k,p′) (2)

in the center-of-mass (CM) frame (P=0) with external two-body energyz, cf. Fig. 2. In the Matsubara
representation, the one- and uncorrelated two-body propagator take the form

G(iωn,k) =
1

[G0(iωn,k)]−1 − Σ(iωn,k)
, G0

(2)(iEn,k) = −β−1
∑

ωn

G(iEn − iωn,k)G(iωn,k) , (3)

respectively, andG0 = 1/(iωn − ε(k)) is the bare propagator. The selfenergy is obtained by closing
T -matrix,

Σ(iwn) =
∫

dp̃ TG ≡ −β−1
∑

νn

∫

d3p
(2π)3

T (iωn + iνn)G(iνn) , (4)

which we evaluate using standard spectral representations. Equations (2) and (4) form a selfconsis-
tency problem that we solve by numerical iteration, therebysatisfying thermodynamic conservation
laws [15].

The keyinputs to the Hamiltonian are the 2-body interaction kernel,V, and the bare parton masses,
M. In the following two sections we discuss how we constrain them using lQCD data for the HQ free
energy and the EoS.

3 Interaction kernel and HQ free energy

In Ref. [17] we have obtained a relation between the static HQfree energy and the potential within
theT -matrix formalism, given by

FQQ̄(r, β) =
−1
β

ln
[

∫ ∞

−∞

dE e−βE
−1
π

Im[
1

E + iǫ − Ṽ(r) − ΣQQ̄(E + iǫ, r)
]
]

. (5)
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Figure 3. Our results for the selfconsistent fit to lQCD data [16] for the static HQ freeenergy and resulting
potential,Ṽ(r) (lower left and middle panels for two different temperatures) and the associated one- and uncor-
related two-body spectral functions,ρQ(ω,∞) andρQQ̄(ω,∞), respectively (upper left and middle panels for the
same two temperatures), for the strongly-coupled solution. The right column shows the fitted screening masses
for Coulomb (solid line) and string (dashed line) interactions.

In the weak-coupling limit (or at low temperatures), where the imaginary part of the in-medium two-
body selfenergy,ΣQQ̄, is small, one readily recovers that the free energy coincides with the potential,
Ṽ (defined as containing a non-trivial infinite-distance limit, see Eq. (6) below). However, at strong
coupling large imaginary part develop and lead to appreciable deviations between potential and free
energy. As an ansatz for the potential, we employ a generalized in-medium (screened) Cornell poten-
tial [18],

Ṽ(r) = VC(r) + VS(r) + 2∆MQ = −
4
3
αs

e−mdr

r
−
σe−msr−(cbmsr)2

ms
−

4
3
αsmd + σms, (6)

including color-Coulomb (VC) and string terms (VS). Equation (6) is written in the color-singlet
channel for static quarks, but in the calculations of the EoSreported in the next section we include all
possible two-body color channels with appropriate Casimirfactors and relativistic corrections [19].
The screening of the string term is constrained usingms = (csm2

dσ/αs)1/4 [20] and also contains
a quadratic term, (cbmsr)2, to better mimic string breaking effects. The genuine two-body part is
defined asV(r) = VC(r) + VS(r), while the nonzero infinite-distance limit,Ṽ(∞), is related with the
mass generated by self-interactions,

∆MQ = −
1
2

∫

drρ(r)V(r) =
1
2

(−
4
3
αsmd + σms) = Ṽ(∞)/2 , (7)

corresponding to the classical static potential energy of apoint charge,ρ(r) = δ(r), in its own poten-
tial; ΣQQ̄(z, r) denotes the analytical two-body selfenergy whoser-dependence includes interference
effects [19, 21] which ensure thatΣQQ̄(z, r) vanishes for a color-singletQQ̄ pair in ther → 0 limit.



The solution for a fit of the underlying potential to the lQCD free-energy data turns out to not be
unique. We therefore bracket the possible range of potentials by a “strongly-coupled solution" (SCS)
and which maximally deviates from the free energy, and a “weakly-coupled solution" (WCS) which
is as close as possible to the free energy (within our abilityto find fits). In Fig. 3 we show the results
for the fit to the free energy as well as the underlying potential and one- and uncorrelated two-body
spectral functions of static quarks for the SCS. The potential is seen to significantly exceed the free
energy at intermediate and large distances (especially at low temperatures), due to large imaginary
parts of the selfenergies which in turn lead to broad the spectral functions. The latter are characterized
by 1- and 2-body widths of near 1 and 2 GeV, respectively, which, remarkably, decrease from the
lower to the higher temperature. While the screening mass forthe Coulomb term increases quite
strongly with temperature (roughly in accord with perturbative estimates,md ∼ gT ), the screening
of the string term is rather weak. This leads to a long-range force which enables the static quark to
interact with multiple thermal partons and thus significantly contributes to the large imaginary parts.
In the WCS (not shown), the potential is much closer to the freeenergy and the imaginary parts are
much smaller at low temperatures.

4 Equation of state and light-parton masses

Next we apply the Hamiltonian to calculate the EoS of the QGP using the Luttinger-Ward-Baym
formalism [15, 22, 23] where the free energy of the system is given by

Ω = ∓
∑

Tr{ln(−G−1) + [(G0)−1 −G−1]G} ± Φ , (8)

where the upper (lower) signs corresponds to bosons (fermions). The “
∑

Tr” includes a 3-momentum
integral and summation over Matsubara frequencies (with factors of -1/β) and discrete quantum num-
bers. The Luttinger-Ward functional (LWF),

Φ =

∞
∑

ν=1

Φν ,Φν =
∑

Tr{
1
2ν
Σν(G)G , (9)

contains the 2-body interaction contribution to the EoS. Itcannot be as straightforwardly resummed
as theT -matrix due to additional 1/ν factors for theν-th order closed loop diagrams represented by
closed selfenergies,Σν(G), needed to eliminate double counting. In ladder approximation one has
Σν(G) =

∫

dp̃ [VG0
(2)VG0

(2) · · ·V]G, so that the LWF functionalΦ can be expressed as

Φ =
1
2

∑

Tr
{

G
[

V +
1
2

VG0
(2)V + . . . +

1
ν

VG0
(2)VG0

(2) . . . .V + . . .
]

G
}

. (10)

The part in brackets, [· · · ], has a structure similar to theT -matrix resummation,

T = V + VG0
(2)V + . . . + VG0

(2)VG0
(2) . . .V + . . . =















∞
∑

ν=0

(

VG0
(2)

)ν















V = [1 − VG0
(2)]
−1V , (11)

except for the extra coefficients 1/ν. However, we can write

V +
1
2

VG0
(2)V + . . . +

1
ν

VG0
(2)VG0

(2) . . .V + · · · =















∞
∑

ν=1

1
ν

(

VG0
(2)

)ν















[G0
(2)]
−1 = − ln[1 − VG0

(2)][G
0
(2)]
−1

≡ LogT (12)
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Figure 4. Examples of diagrams that are resummed by the generalizedT -matrix approach for the EoS.
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Figure 5. The fit results for the bare masses of the quarks and gluons in the Hamiltonian (left panel), the resulting
fit to the lQCD data [11] for the QGP pressure (middle panel; solid line: total, dashed line: LWF contribution),
and the relative contribution of the LWF part to the total pressure (right panel).

and to obtain a matrix-log representation of the skeleton series [20, 24], as a generalization of usual
T -matrix resummation. The natural-base “Log” should be understood as a matrix operation in a
discrete energy-momentum space together with other quantum numbers, defined through its power
series [20, 24]. Closing one of the external lines of this quantity with aG, in resemblance of Eq. (4),
we define LogΣ ≡

∫

dp̃ LogT G. The LWF is obtained by closing another external line as

Φ =
1
2

∫

dp̃ G LogΣ, Ω =
∑

j

∓d j

∫

dp̃
{

ln(−G j( p̃)−1) + [Σ j( p̃) −
1
2

LogΣ j( p̃)]G j( p̃)
}

, (13)

where j sums over the particle species. This procedure to sum the diagrams is illustrated in Fig. 4.
The resummation of the LWF is critical to incorporate bound-state (or resonance) contributions to the
pressure. The selfenergy of partons can then be obtained from the selfconsistentT -matrix equation
via the functional derivative of this LWF, which explicitly illustrated the “conserving approximation”
for the resulting 1- and 2-body spectral functions within this scheme [15, 23]. This, in turn, allows to
probe transitions from parton to meson degrees of freedom, if any, in the system.

The resulting equation of state is shown in the middle panel of Fig. 5 where we utilized the bare
light-parton masses figuring in the Hamiltonian as fit parameters, shown in the left panel in Fig. 5.
We use the ansatzMq = Mfit + Mnp

q andMg = 3/2Mfit + Mnp
g with a fit parameterMfit and additional

mass contributions separately for quarks and gluons which follow from the nonperturbative part given
by the infinite-distance limit of the potential,̃V, in the corresponding color channel. This ansatz
allows the masses to smoothly transit from nonperturbativebehavior at low temperature to perturbative
behavior at high temperature. At low temperatures gluons are found to essentially decouple from the
pressure due to their large masses. On the other hand, the LWF contribution grows with decreasing
temperature, see right panel of Fig. 5, mostly driven by the formation of mesonic and diquark bound
states/ resonances. In this sense we find a gradual transition in the degrees of freedom from partonic
to hadronic states as the temperature approachesTc from above. This is different in the WCS, where
the LWF does not exceed 15% of the total pressure and is rather constant with temperature.



5 Spectral properties of QGP
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Figure 6. In-medium parton spectral functions from the selfconsistent solution in the SCS. From left to right, we
show the light-quark (q), gluon (g), charm-quark (c) and bottom-quark (b) spectral functions for 4 different 3-
momenta in each panel, and for temperaturesT=0.194 GeV (upper row) andT=0.400 GeV (lower row). Note the
melting of the low-momentum quark and gluon quasiparticles at low temperatures (with additional low-energy
collective modes), while the charm and especially bottom quark remain good quasiparticles.

We proceed to inspect the spectral properties underlying our selfconsistent off-shell calculations of
the EoS discussed in the previous section, cf. Fig. 6. NearTc, the low-momentum light-parton spectral
functions acquire widths of order 1 GeV, significantly exceeding their masses, and thus implying a
melting of their quasiparticle structure. Consequently, their contribution to the EoS is suppressed,
while at the same time the pertinentT -matrices develop broad mesonic bound states with appreciable
strength (and a mass close to the vacuumρ mass). These states therefore play a dual role of newly
emerging degrees of freedom and providing large interaction strength for the partons, thus connecting
the strong coupling nature of the QGP with a gradual transition to hadronic states. Furthermore, the
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attractive real part of the light-parton selfenergies leads to the appearance of low-energy collective
modes in their spectral functions. These modes could play animportant role for describing the quark
susceptibilities where quasiparticle models face difficulties due to their large masses which suppress
fluctuations. At high parton 3-momenta and higher temperature, the quasiparticle structures re-emerge
– a manifestation of the weakening QCD force with increasingmomentum transfer and illustrating the
changing degrees of freedom as the QGP is probed with varyingresolution. In the WCS (not shown),
all partons remain well-defined quasiparticle at all temperatures and 3-momenta, while rather weak
and sharp resonances appear in theT -matrices at low temperature.

6 Transport properties of QGP

Thus far the lQCD constraints imposed on our approach (HQ free energy, EoS and quarkonium corre-
lator ratios (not explicitly discussed here)) cannot decisively distinguish between the SCS and WCS.
As another constraint we have therefore investigated transport coefficients which figure in applications
to heavy-ion phenomenology, specifically the HQ diffusion coefficient and the ratio of viscosity over
entropy density.

For the HQ friction coefficient, we extend previousT -matrix calculations carried out for the free
and internal energies as potential proxies [4, 13, 25]. In particular, due to the large widths in the SCS
we account for off-shell effects based on the formalism described in Ref. [26]. Schematically, one has

A(p) =

〈

(1−
p · p′

p2
)ρiρiρc

〉

, (14)

whereρi(c) are spectral functions for light partons (charm quark) andp (p′) denotes the incoming
(outgoing) charm-quark momentum. The spatial diffusion coefficient is defined asDs = T/(A(0)M).

For the viscosity,η, a Kubo formula is employed using the leading-density energy-momentum
tensor [27] with relativistic extension,

η = lim
ω→0

∑

i

πdi

ω

∫

d3pdλ
(2π)3

p2
x p2
y

ε2i (p)
ρi(ω + λ, p)ρi(λ, p)[ni(λ) − ni(ω + λ)] , (15)
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wheredi andni(ω) are the partons’ degeneracies and thermal distribution functions, respectively. The
corrections from higher orders are expected to be small [28–31], which we have checked to remain
valid within our approach.

The dimensionless quantitiesDs(2πT ) and 4πη/s characterize the interaction strength of the
bulk medium (with smaller values indicating stronger coupling); they are shown in the left panel
of Fig. 8. For the SCS both transport coefficients are within a factor of two of the conjectured quan-
tum lower bounds of one, and increase with temperature indicating a transition to a more weakly
coupled medium. On the contrary, for the WCS both transport coefficients are significantly larger and
rather constant with temperature. Especially the HQ diffusion coefficient acquires magnitudes which
do not compare well with current extractions from HF phenomenology in high-energy heavy-ion col-
lisions [4].

In an attempt to better quantify the notions of "strongly" and “weakly" coupled media, one can
inspect the ratio for the two dimensionless transport coefficients discussed above [32]. In particular,
the ratior ≡ [2πTDs]/[4πη/s] is expected to be near one in the strong-coupling limit [33,34], while
perturbative estimates [35] appropriate for a weakly coupled system result in∼5/2. We plot this
ratio in the right panel of Fig. 8 for both the SCS and WCS. Interestingly, for the SCS the ratio is
around one for low temperatures, slowly increasing with temperature but still significantly below 5/2
at T=400 MeV. On the contrary, for the WCS the ratio is close to 5/2 characteristic for a weakly-
coupled system even at low temperatures, with insignificanttemperature dependence.

7 Conclusion

Unraveling the microscopic structure of the strongly coupled QCD medium in the vicinity of the
transition from hadronic to partonic matter is one of the keychallenges in the study of the QCD
phase diagram. Toward this end, we have put forward a thermodynamicT -matrix formalism which
includes basic nonperturbative ingredients that are expected to be relevant: For the underlying
two-body interaction we account for remnants of the confining force encoded in a screened Cornell
potential ansatz, while theT -matrix allows for a ladder resummation to account for dynamically
formed bound states and retains the full off-shell properties of one- and two-body spectral functions.
Our starting point is a relativistic Hamiltonian, whose in-medium two-body interaction is constrained
by lattice-QCD data for the heavy-quark free energy and euclidean quarkonium correlators, while
the light-parton masses in the kinetic term are fitted to the lattice equation of state. At this level, the
solution to our set-up is not unique; however, a strongly coupled solution has the attractive features
of melting light-parton degrees of freedom in connection with emerging hadronic bound states as the
temperature approachesTc from above. We furthermore evaluated transport propertiesof the QGP by
computing the shear-viscosity-to entropy density ratio and the heavy-quark diffusion coefficient. In
the strongly-coupled scenario, their values are within a factor of∼2 of the conjectured quantum lower
bound, and slowly increase with temperature. The ratio of these two quantities corroborates that
the QGP nearTc is a strongly-coupled medium near the quantum lower bound, which reiterates the
necessity of including quantum off-shell effects in studying its properties. Future applications include
the calculation of high-pT parton transport, quark-number susceptibilities to explore the finiteµq part
of the phase diagram, and the explicit inclusion of condensate formation to treat chiral symmetry
breaking and color superconductivity.
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