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Abstract. We discuss a non-perturbatiiematrix approach to investigate the micro-
scopic structure of the quark-gluon plasma (QGP). Utilizing fiactive Hamiltonian
which includes both light- and heavy-parton degrees of freedoms.bdsie two-body
interaction includes color-Coulomb and confining contributions in all aviglablor
channels, and is constrained by lattice-QCD data for the heavy-quelefrergy. The
in-mediumT-matrices and parton spectral functions are computed selfconsistatitly w
full account of df-shell properties encoded in large scattering widths. We applyf the
matrices to calculate the equation of state (EoS) for the QGP, including & liaxden-
mation of the Luttinger-Ward functional using a matrix-log technique to aetctor the
dynamical formation of bound states. It turns out that the latter becoamotminant de-
grees of freedom in the EoS at low QGP temperatures indicating a transamrparton
to hadron degrees of freedom. The calculated spectral propert@seofind two-body
states confirm this picture, where large parton scattering rates dissolpartbe quasi-
particle structures while broad resonances start to form as the psitiedbtemperature
is approached from above. Further calculations of transpofficieats reveal a small
viscosity and heavy-quarkflision codicient.

1 Introduction

The theoretical study of the QCD phase diagram poses fobtaddallenges due to the strong force
between quarks and gluons at intermediate and large degaiitie QCD phase structure is believed
to be tightly connected to two key phenomena of the standadieinnamely hadronic mass gener-
ation and color confinement. In addition, it turned out tiet strongly interacting fireball medium
formed in ultra relativistic collisions of heavy nuclei pesses the smallest known ratio of viscosity
to entropy density, giving rise to the notion of the strongbupled quark-gluon plasma (sQGP) [1-
3], a near-perfect liquid. The microscopic structure of $EGP, including its prevalent degrees of
freedom and its possible relation to the nearby phase tiam&) into hadronic matter, remains a
forefront topic in contemporary research. In addition ® litw viscosity inferred from fluid-dynamic
models for the bulk evolution of the medium in heavy-ion isidins at RHIC and the LHC, the large
modifications observed for the spectra and elliptic flow davheflavor hadrons [4] have provided a
more direct evidence of a frequent rescattering that (Heqwarks undergo throughout the expansion
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Figure 1. Dimuon excess spectra (after subtraction of background and thesfatalhadron decay cocktail) [7]
compared to theoretical calculations of thermal radiation from an expgufideball with contributions from the
QGP and hadronic phase with in-medigrandw spectral functions; figure taken from Ref. [10].

of the nuclear fireball. At the same time, dilepton invariardss spectra emanating from the thermal
radiation of the hot system [5—7] have revealed thatgmeeson resonance peak, which dominates
in the low-mass part of the electromagnetic spectral foncith vacuum, melts due to strong rescat-
tering in hot and dense hadronic matter [8], cf. Fig. 1. WHilis imelting provides a signature of
chiral symmetry restoration [9], it is also suggestive fdramsition in the degrees of freedom in the
medium, from well-defined hadronic states into a quasiioaoin of partons. The challenge remains
how this melting can be seamlessly connected to a quarkidiased description on the QGP side of
the medium.

A microscopic description of the sSQGP is generally expettetequire nonperturbative ingre-
dients, in terms of both the underlying interaction (bey&@wlor-Coulomb) and resummations of
diagrams. The vicinity of the sQGP to the phase transitito iradrons suggests that (remnants of)
a confining force and the emergence of bound states play amtedsrole. Computations of the
heavy-quark (HQ) free energy in lattice QCD show that itglalistance limit stays above zero until
temperatures of about 450 MeV [11], supporting to the presef non-Coulombic contributions (the
leading Coulombic contribution is negative). To capturesthaspects, we have developed a thermo-
dynamicT-matrix approach which resums the ladder series of an inkmedhteraction kernel that
includes the screened Coulomb and confining forces to cteaize the interaction strength between
the partons in the QGP, and allows for the dynamical fornmatibbound and resonance states. It
provides a uniform treatment of light and heavy partons,lEnonstrained by pertinent results from
IQCD and enables the calculation of spectral functions aaksport cofficients for applications to
heavy-ion phenomenology. We will briefly review the selfsimtentT-matrix approach in Sec. 2, dis-
cuss the lattice-QCD (IQCD) constraints on the underlyiaoteptial in Sec. 3, compute the equation
of state (E0S) in Sec. 4, and evaluate the emerging speattdtansport properties in Secs. 5 and 6,
respectively. Section 7 contains our conclusions and okitlo



Figure 2. T-matrix resummation of ladder diagrams.

2 T-matrix approach

We start from an gective in-medium parton Hamiltonian,
1.P P P P
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with single-particle energies(p) = /M2 + p2 containing the bare parton massbk,and a 2-body
interaction kernely, wherep, p’ andP denote the relative and total momenta of the pair. The sum
is over momentum, spin, color, and particle species (34gglark flavors, gluons, charm and bottom
quarks). Summing up the ladder diagrams generated fronidtmsiltonian, we obtain th&-matrix
equation [12-14],
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in the center-of-mass (CM) framB+£0) with external two-body energy cf. Fig. 2. In the Matsubara
representation, the one- and uncorrelated two-body peaipatake the form

1

G(iwn, k) = [GOiwn, K)] ™1 — Z(iwn, k) ’

Gl)(iEn, k) = 87" > G(iEq — iwn, K)Gliwn, k), (3)

respectively, an@® = 1/(iw, — &(k)) is the bare propagator. The selfenergy is obtained byrmos
T-matrix,

3
S(iwp) = fdr) TG = _lg—lvz f (gﬂ_r))sT(ia)n +ivn)G(ivp) , 4)
which we evaluate using standard spectral representatieqisations (2) and (4) form a selfconsis-
tency problem that we solve by numerical iteration, thersdtysfying thermodynamic conservation
laws [15].

The keyinputsto the Hamiltonian are the 2-body interaction kerigland the bare parton masses,
M. In the following two sections we discuss how we constraanthusing IQCD data for the HQ free
energy and the EoS.

3 Interaction kernel and HQ free energy

In Ref. [17] we have obtained a relation between the staticfid® energy and the potential within
the T-matrix formalism, given by
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Figure 3. Our results for the selfconsistent fit to IQCD data [16] for the static HQ &mergy and resulting
potential,V(r) (lower left and middle panels for two fierent temperatures) and the associated one- and uncor-
related two-body spectral functionsg(w, c0) andpog(w, o), respectively (upper left and middle panels for the
same two temperatures), for the strongly-coupled solution. The ridgimtncoshows the fitted screening masses
for Coulomb (solid line) and string (dashed line) interactions.

In the weak-coupling limit (or at low temperatures), whdre imaginary part of the in-medium two-
body selfenergyXqg, is small, one readily recovers that the free energy coewcidith the potential,
V (defined as containing a non-trivial infinite-distance tinsee Eq. (6) below). However, at strong
coupling large imaginary part develop and lead to appréeidéviations between potential and free
energy. As an ansatz for the potential, we employ a generhliiemedium (screened) Cornell poten-
tial [18],
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V(r) = Ve(r) + Vs(r) + 2AMq = _50‘5 — - - - éasmj +oms, (6)
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including color-Coulomb \{¢) and string terms\{s). Equation (6) is written in the color-singlet
channel for static quarks, but in the calculations of the Eagfrted in the next section we include all
possible two-body color channels with appropriate Casfattors and relativistic corrections [19].
The screening of the string term is constrained usimg= (csmio/as)* [20] and also contains
a quadratic term,omsr)?, to better mimic string breakingffects. The genuine two-body part is
defined as/(r) = Vq(r) + Vs(r), while the nonzero infinite-distance limi,(), is related with the
mass generated by self-interactions,

AMg = —% fdrp(r)V(l’) = %(—gasmd +oms) = V(0)/2, (7)

corresponding to the classical static potential energypdiat chargep(r) = 6(r), in its own poten-
tial; Zog(z r) denotes the analytical two-body selfenergy whosiependence includes interference
effects [19, 21] which ensure th&g(z r) vanishes for a color-singl&Q pair in ther — 0 limit.



The solution for a fit of the underlying potential to the IQCRd&-energy data turns out to not be
unique. We therefore bracket the possible range of poteriitjaa “strongly-coupled solution” (SCS)
and which maximally deviates from the free energy, and a klyeeoupled solution” (WCS) which
is as close as possible to the free energy (within our altditynd fits). In Fig. 3 we show the results
for the fit to the free energy as well as the underlying po&teind one- and uncorrelated two-body
spectral functions of static quarks for the SCS. The patkigiseen to significantly exceed the free
energy at intermediate and large distances (especiallynatdmperatures), due to large imaginary
parts of the selfenergies which in turn lead to broad thetspldanctions. The latter are characterized
by 1- and 2-body widths of near 1 and 2 GeV, respectively, twvhiemarkably, decrease from the
lower to the higher temperature. While the screening masghiiCoulomb term increases quite
strongly with temperature (roughly in accord with pertuimestimatesmy ~ ¢T), the screening
of the string term is rather weak. This leads to a long-ramgeef which enables the static quark to
interact with multiple thermal partons and thus signifibanbntributes to the large imaginary parts.
In the WCS (not shown), the potential is much closer to the émergy and the imaginary parts are
much smaller at low temperatures.

4 Equation of state and light-parton masses

Next we apply the Hamiltonian to calculate the EoS of the QGRgithe Luttinger-Ward-Baym
formalism [15, 22, 23] where the free energy of the systenivisrgby

Q=7 Z TrHIn(-G ™ + [(GO) -GG} + @, (8)

where the upper (lower) signs corresponds to bosons (feshidhe 3. Tr” includes a 3-momentum
integral and summation over Matsubara frequencies (witofa of -13) and discrete quantum num-
bers. The Luttinger-Ward functional (LWF),

00

= ZCDV,CDV_ZTr 5. %(G)G. (9)

contains the 2-body interaction contribution to the Eo$altnot be as straightforwardly resummed
as theT-matrix due to additional /v factors for they-th order closed loop diagrams represented by
closed selfenergieg, (G), needed to eliminate double counting. In ladder approtionaone has

%,(G) = [dp [VGE, VG, - - VIG, so that the LWF functionab can be expressed as

1
D= > ZTr{G[V + ZVGY oV +...+ VG )VG(Z) V + ]G} ) (10)

The part in brackets; {- ], has a structure similar to tHie-matrix resummation,

(e

_ 0 0 _ oYy 0 1-1
T = V+VG(2)V+ +VG(2)VG(2) V+"'_[Z)(VG(2))}V [1- VG(Z)] VvV, (11)

except for the extra cdigcients Jv. However, we can write
1 0 1 0 0 N 1 0 1 -1
VH SVGRV +.. + ZVGH VG, .V - = Z; (VGY) [ [GE1™ = — In[1 - VG ][GY,)]-
=LogT (12)
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Figure 4. Examples of diagrams that are resummed by the generdlizadtrix approach for the EoS.
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Figureb5. The fit results for the bare masses of the quarks and gluons in the Haanil{¢eft panel), the resulting
fit to the IQCD data [11] for the QGP pressure (middle panel; solid line: totahed line: LWF contribution),
and the relative contribution of the LWF part to the total pressure (righelpa

and to obtain a matrix-log representation of the skeletoies¢20, 24], as a generalization of usual
T-matrix resummation. The natural-base “Log” should be usided as a matrix operation in a
discrete energy-momentum space together with other guantumbers, defined through its power
series [20, 24]. Closing one of the external lines of thismgiyawith aG, in resemblance of Eq. (4),
we define Lo = fdﬁ LogT G. The LWF is obtained by closing another external line as

=3 [dpGLogz - IR [ db{in-Gi0) ) + 1=,(p) - SLoamPlGB).  (23)

where j sums over the particle species. This procedure to sum tlyeadhies is illustrated in Fig. 4.
The resummation of the LWF is critical to incorporate boutates(or resonance) contributions to the
pressure. The selfenergy of partons can then be obtainedtfre selfconsistent-matrix equation
via the functional derivative of this LWF, which explicitljlustrated the “conserving approximation”
for the resulting 1- and 2-body spectral functions withiis tcheme [15, 23]. This, in turn, allows to
probe transitions from parton to meson degrees of freedamyj in the system.

The resulting equation of state is shown in the middle pahEig 5 where we utilized the bare
light-parton masses figuring in the Hamiltonian as fit par@nse shown in the left panel in Fig. 5.
We use the ansatdlq = My + Mg" andM, = 3/2Mg + M;" with a fit parameteMg and additional
mass contributions separately for quarks and gluons wiitdvf from the nonperturbative part given
by the infinite-distance limit of the potential/, in the corresponding color channel. This ansatz
allows the masses to smoothly transit from nonperturbatevior at low temperature to perturbative
behavior at high temperature. At low temperatures gluoasamd to essentially decouple from the
pressure due to their large masses. On the other hand, the aWbtition grows with decreasing
temperature, see right panel of Fig. 5, mostly driven by tmenfition of mesonic and diquark bound
stateg resonances. In this sense we find a gradual transition indteeds of freedom from partonic
to hadronic states as the temperature approathsem above. This is dierent in the WCS, where
the LWF does not exceed 15% of the total pressure and is rathstant with temperature.



5 Spectral properties of QGP
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Figure 6. In-medium parton spectral functions from the selfconsistent solutioreiS@S. From left to right, we
show the light-quarkd), gluon §), charm-quark€) and bottom-quarkk) spectral functions for 4 éfierent 3-
momenta in each panel, and for temperatdre8.194 GeV (upper row) anti=0.400 GeV (lower row). Note the
melting of the low-momentum quark and gluon quasiparticles at low tempesafwith additional low-energy
collective modes), while the charm and especially bottom quark remaih goasiparticles.

We proceed to inspect the spectral properties underlyingaltconsistentfi-shell calculations of
the EoS discussed in the previous section, cf. Fig. 6. Ngahe low-momentum light-parton spectral
functions acquire widths of order 1 GeV, significantly exdieg their masses, and thus implying a
melting of their quasiparticle structure. Consequentigirt contribution to the EoS is suppressed,
while at the same time the pertinefiMmatrices develop broad mesonic bound states with apjecia
strength (and a mass close to the vacyumass). These states therefore play a dual role of newly
emerging degrees of freedom and providing large interadtiength for the partons, thus connecting
the strong coupling nature of the QGP with a gradual traomsitd hadronic states. Furthermore, the
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Figure 7. Imaginary part of the on-shell color-singl8twave T-matrices for diferent 3 diferent temperatures
in each panel for: (from left to right) bottomoniurbk), charmonium ¢c), D-meson €q), p-meson ¢q), and
glueball gg) channels. Note the decreasingxis scale for the first 4 panels.



attractive real part of the light-parton selfenergies setlthe appearance of low-energy collective
modes in their spectral functions. These modes could plagnpartant role for describing the quark
susceptibilities where quasiparticle models fad@dalilties due to their large masses which suppress
fluctuations. At high parton 3-momenta and higher tempegathe quasiparticle structures re-emerge
—a manifestation of the weakening QCD force with increasiognentum transfer and illustrating the
changing degrees of freedom as the QGP is probed with vargsgajution. In the WCS (not shown),
all partons remain well-defined quasiparticle at all terap@mes and 3-momenta, while rather weak
and sharp resonances appear inTth@atrices at low temperature.

6 Transport properties of QGP

Thus far the IQCD constraints imposed on our approach (HQdrergy, EoS and quarkonium corre-
lator ratios (not explicitly discussed here)) cannot deelg distinguish between the SCS and WCS.
As another constraint we have therefore investigatedp@hsodficients which figure in applications
to heavy-ion phenomenology, specifically the H@uhion codficient and the ratio of viscosity over
entropy density.

For the HQ friction cofficient, we extend previouB-matrix calculations carried out for the free
and internal energies as potential proxies [4, 13, 25]. htiqdar, due to the large widths in the SCS
we account for G-shell dfects based on the formalism described in Ref. [26]. Scheaibtione has

Ap = (-2 (14)

wherepjg are spectral functions for light partons (charm quark) ang’) denotes the incoming
(outgoing) charm-quark momentum. The spati#fiudiion codicient is defined a®s = T/(A0)M).

For the viscosityy, a Kubo formula is employed using the leading-density epangmentum
tensor [27] with relativistic extension,
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Figure 8. The transport cdéicientsDy(27T) andn/s(4r) of SCS and WCS (left); The ratio dds(27T) of
n/s(4x) of SCS and WCS (right).



whered; andn;(w) are the partons’ degeneracies and thermal distributioctions, respectively. The
corrections from higher orders are expected to be smalld2B-which we have checked to remain
valid within our approach.

The dimensionless quantitie®s(27T) and 4r/s characterize the interaction strength of the
bulk medium (with smaller values indicating stronger caug); they are shown in the left panel
of Fig. 8. For the SCS both transport ¢leients are within a factor of two of the conjectured quan-
tum lower bounds of one, and increase with temperature dtidig a transition to a more weakly
coupled medium. On the contrary, for the WCS both transpafficéents are significantly larger and
rather constant with temperature. Especially the Hfudion codficient acquires magnitudes which
do not compare well with current extractions from HF phenoabegy in high-energy heavy-ion col-
lisions [4].

In an attempt to better quantify the notions of "stronglyd &weakly" coupled media, one can
inspect the ratio for the two dimensionless transportit@ents discussed above [32]. In particular,
the ratior = [27T D] /[4nn/ 9] is expected to be near one in the strong-coupling limit 3§, while
perturbative estimates [35] appropriate for a weakly cedmystem result in-5/2. We plot this
ratio in the right panel of Fig. 8 for both the SCS and WCS. kxéngly, for the SCS the ratio is
around one for low temperatures, slowly increasing withgerature but still significantly below®
at T=400 MeV. On the contrary, for the WCS the ratio is close t» énharacteristic for a weakly-
coupled system even at low temperatures, with insignifitemperature dependence.

7 Conclusion

Unraveling the microscopic structure of the strongly cedpQCD medium in the vicinity of the
transition from hadronic to partonic matter is one of the kégllenges in the study of the QCD
phase diagram. Toward this end, we have put forward a themawdic T-matrix formalism which
includes basic nonperturbative ingredients that are d@gdeto be relevant: For the underlying
two-body interaction we account for remnants of the confjrfiorce encoded in a screened Cornell
potential ansatz, while th&-matrix allows for a ladder resummation to account for dyitafty
formed bound states and retains the fiiftshell properties of one- and two-body spectral functions.
Our starting point is a relativistic Hamiltonian, whosenmredium two-body interaction is constrained
by lattice-QCD data for the heavy-quark free energy andigeah quarkonium correlators, while
the light-parton masses in the kinetic term are fitted to #itiicke equation of state. At this level, the
solution to our set-up is not unique; however, a stronglypted solution has the attractive features
of melting light-parton degrees of freedom in connectiothveimerging hadronic bound states as the
temperature approach&sfrom above. We furthermore evaluated transport propeofiize QGP by
computing the shear-viscosity-to entropy density ratid te heavy-quark éiusion codficient. In
the strongly-coupled scenario, their values are withircéofeof ~2 of the conjectured quantum lower
bound, and slowly increase with temperature. The ratio ef¢htwo quantities corroborates that
the QGP neall is a strongly-coupled medium near the quantum lower bouiwreiterates the
necessity of including quantuntfeshell gfects in studying its properties. Future applications idelu
the calculation of highpr parton transport, quark-number susceptibilities to engothe finiteuq part

of the phase diagram, and the explicit inclusion of condenf@mation to treat chiral symmetry
breaking and color superconductivity.
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