

Office of Science

Scale, Energy, Temperature, and the Emerging Precision of Jet Quenching Abhijit Majumder Wayne State University in collaboration with E. Bianchi, S. Cao, J. Elledge, A. Kumar, M. Kordell, G.-Y. Qin, C. Shen,

ISMD 2017, Tlaxcala, Mexico, Sept 11-15, 2017

Outline

Intro, pQCD and scale dependence

Role of scale in jet evolution,

Role of scale in jet observables,

The scale dependence of transport coefficients,

What needs to be done...

QCD is all about scale!

Well known from DIS What the electron sees, depends on E, Q^2

5

5

5

Many things happen to a jet and the energy deposited by the jet

5

Many things happen to a jet and the energy deposited by the jet

Everything other than leading hadrons is strongly affected by the medium

7

Scattering dominated regime Few, time separated emissions

 $Q^2 = q T$ T: lifetime of a parton

7

Theory: BDMPS, AMY MC: MARTINI*, JEWEL*

Scattering dominated regime Few, time separated emissions

 $Q^2 = q T$ T: lifetime of a parton

Theory: BDMPS, AMY MC: MARTINI*, JEWEL*

• Many of these partons are absorbed by the medium

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled ! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

P. Chesler, W. Horowitz J. Casalderrey-Solana,G. Milhano, D. Pablos, K. Rajagopal

In an expanding QGP

9

In an expanding QGP

Energy deposition-thermalization

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AM

Soft wide angle radiation

Strong coupling, AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Everything changes with scale in jet quenching

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AMY

Soft wide angle radiation Strong coupling, AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Strong coupling, AdS-CFT Energy thermalization

BDMPS-AMY

Soft wide angle radiation Strong coupling, AdS-CFT

Energy thermalization

Hadronization

Transport coefficients partons in a dense medium

 $p_z^2 \simeq E^2 - p_\perp^2$

 $p^+ \simeq p_\perp^2 / 2p^-$

$$D\left(\frac{p_{h}}{p-k}, m_{J}^{2}\right) \quad \hat{e} = \frac{\langle \Delta E \rangle_{L}}{L} \quad \begin{array}{c} \text{Elastic energy loss} \\ \text{rate} \\ \text{also diffusion rate } e_{2} \end{array}$$

By definition, describe how the medium modifies the jet parton!

In general, 2 kinds of transport coefficients Type I: which quantify how the medium changes the jet $\hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$ $\hat{q}(E,Q^2)$ $\hat{e}(E,Q^2) \qquad \hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L} \qquad \dots$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale

 $\delta T^{\mu
u}$

In general, 2 kinds of transport coefficients Type 1: which quantify how the medium changes the jet $\hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{I} \dots$ $\hat{q}(E,Q^2)$ $\hat{e}(E,Q^2) \qquad \hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L}.$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale

 $\delta T^{\mu
u}$

In general, 2 kinds of transport coefficients Type 1: which quantify how the medium changes the jet $\hat{q}_4(E,Q^2) = \frac{\langle p_T^4 \rangle - \langle p_T^2 \rangle^2}{L} \dots$ $\hat{q}(E,Q^2)$ $\hat{e}(E,Q^2) \qquad \hat{e}_2(E,Q^2) = \frac{\langle \delta E^2 \rangle}{L} \qquad \hat{e}_4(E,Q^2) = \frac{\langle \delta E^4 \rangle - \langle \delta E^2 \rangle^2}{L}.$ Type 2: which quantify the space-time structure of the

deposited energy momentum at the hydro scale

->

 $\delta T^{\mu
u}$

In all calculations presented bulk medium described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it Fit the \hat{q} for the initial T in the hydro in central coll.

From RHIC to LHC circa 2012

Reasonable agreement with data, no separate normalization at LHC W/O any non-trivial x-dependence (E dependence)

Results from the JET collaboration

K. Burke et al.

Do separate fits to the RHIC and LHC data for maximal \hat{q} without assuming any kink in the \hat{q} vs T³ curve

Results from the JET collaboration

K. Burke et al.

Do separate fits to the RHIC and LHC data for maximal \hat{q} without assuming any kink in the \hat{q} vs T³ curve

If this is true, must effect the centrality dependence of R_{AA} , v_2 , and its centrality dependence at a given collision energy

LHC R_{AA} without a bump in \hat{q}/T^3

8

v_2 at LHC without a bump in \hat{q}/T^3

19

v_2 at RHIC without a bump in \hat{q}/T^3

20

Calculating \hat{q} with more care

$$W(k) = \frac{g^2}{2N_c} \langle q^-; M | \int d^4x d^4y \bar{\psi}(y) \ \mathcal{A}(y)\psi(y)$$

$$\times |q^- + k_{\perp}; X \rangle \langle q^- + k_{\perp}; X |$$

$$\times \bar{\psi}(x) \ \mathcal{A}(x)\psi(x) | q^-; M \rangle$$

in terms of W, we get

Q

k

)

t

Final state is close to ``on-shell''

$$\delta[(q+k)^2] \simeq \frac{1}{2q^-} \delta\left(k^+ - \frac{k_\perp^2}{2q^-}\right)$$

Also we are calculating in a finite temperature heat $\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y_\perp}}}{\langle n|F^{+,}{}_\perp(y^-,\vec{y}_\perp)F_\perp^+(0)|n\rangle}$ $\hat{q}(q^+,q^-) \qquad 2q^-q^+ = Q^2, \ \frac{k_\perp^2}{2q^-} = xP^+$

Can evaluate on Lattice!

What one usually does at this point

• Take the q⁻ to be infinity

$$\hat{q} \sim \int \frac{dy^{-} d^{2} y_{\perp}}{(2\pi)^{3}} d^{2} k_{\perp} e^{i\vec{k}_{\perp} \cdot \vec{y}_{\perp}} \langle n | F^{+}_{\perp} (y^{-}, \vec{y}_{\perp}) F^{+}_{\perp} (0) | n \rangle$$

$$= \int \frac{dy^{-}}{2\pi} \langle n | F^{+,} \downarrow (y^{-}) F_{\perp}^{+}(0) | n \rangle$$

This makes \hat{q} into a one dimensional quantity an assumption of small x or high E. Ŷ at vanishing x has been taken to NLO
Z. Kang, E. Wang, X.-N. Wang, H. Xing, PRL 112 (2014) 102001
T. Liou, A. Mueller, B. Wu, Nucl.Phys. A916 (2013) 102-125
J. Blaizot, Y. Mehtar-tani, arXiv:1403.2323 [hep-ph]

E. Iancu, arXiv:1403.1996 [hep-ph]

None of these NLO corrections have been tested in phenomenology.

- What is x for a QGP
- Bjorken x in DIS on a proton

• In rest frame of proton

 $x_B = \frac{Q^2}{2E \cdot M} = \frac{\eta}{M}$

 x_B

 $\frac{Q^2}{2p \cdot Q}$

• In the PDF
$$f(x_B) = \int \frac{dy^-}{2\pi} e^{ix_B P^+ y^-} \langle P | \bar{\psi}(y^-) \frac{\gamma^+}{2} \psi | P \rangle$$

 $g(\eta) = \int \frac{dy^-}{2\pi} e^{i\eta y^-} \langle P | \bar{\psi}(y^-) \frac{\gamma^+}{2} \psi | P \rangle$
In the rest frame of the proton, $\mathbf{x} \sim \eta$

We can compare η values between DIS and heavy- $\displaystyle \mathop{ions}_{_{25}}$

How about x or η dependence of \hat{q}

 The Glauber condition prevents a direct application of this established procedure.

 $\mathbf{\hat{q}}$ is a 3-D object depending on x, $\underline{\mathbf{k}}_{\mathrm{T}}$ Like a TMDPDF,

at large \underline{k}_T can *refactorize* to regular PDF X radiated gluon Contributions start at order α_S ,

A factorized picture

A factorized picture

Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ \hat{q} contains all dynamics below Q λ

A factorized picture

Q is the hard scale of the jet ~ E Q λ is a semi-hard scale ~ (ET)^{1/2}, $\lambda \rightarrow 0$ \hat{q} contains all dynamics below Q λ

Input PDF at $Q^2 = 1 \text{ GeV}^2$

Putting it all together

Input PDF

$$G(x) = Cx^a(1-x)^b$$

making *b* negative increases strength at x ~ 1

Seems ruled out by fits..

Mass of d.o.f. less than mass of nucleon.

What does this mean?

- Possible resolution of the JET puzzle
- Based on consistent Q^2 evolution of \hat{q}
- Should have x evolution at high energy
- Applying TMD systematics, may complicate this interpretation.
- q̂ may lie at the intersection of DGLAP and BFKL (previously explored by Casalderray-Solana and Wang)

Going from semi-analytic (eventaveraged) to MC event generators

Some parts are done with much greater accuracy

at low p_T sensitive to in-medium frag.

Need a prescription at lower p_{T.} Used hard cut for partons at Q=1GeV more than a fm inside

More sensitive to multiple scales for full jet

- jets done partonically
- hard cut for Q<1GeV more than 1fm in
- Should do the Q<1GeV more carefully
- Enter JETSCAPE!

Switching between one event-generator and the next in a brick @JETSCAPE Phys.Rev. C96 (2017) no.2, 024909 Repeat with hadronization and fluid medium being calculated

Evidence of multiple scales from

 $Q_0 = 3 \text{ GeV}$

dynamical Q₀

Outlook

- We really need to understand/model sub-leading hadronization
- Jets with R ~ 0.4 involve hadrons from the medium
- Jets involve energy deposited from hard partons to medium and then reconstructed in jet (This process needs to be well understood and modeled)
- There is no vacuum jet formation for RHIC and LHC jets τ ~ E/(E R)² = 1/ (ER²) = 1 GeV⁻¹ ~ 0.2 fm (for E =100 GeV, R = 0.1).

Near side and away side correlations

A wide range of single particle observables can be explained by a weak coupling formalism

Extracted \widehat{q} has a lot or fluctuation included in it. Looks different at different scales

Extracted \widehat{q} has a lot or fluctuation included in it. Looks different at different scales

Extracted a has a lot or fluctuation included in it. Looks different at different scales

Extracted \widehat{q} has a lot or fluctuation included in it. Looks different at different scales

Extracted \widehat{q} has a lot or fluctuation included in it. Looks different at different scales

<u>Sea-like</u> PDF of the QGP

38

Narrow valence like PDF of QGP

39

Wide valence like PDF of the QGP

