

Scale, Energy, Temperature, and the

 Emerging Precision of Jet QuenchingAbhijit Majumder
Wayne State University in collaboration with

E. Bianchi, S. Cao, J. Elledge, A. Kumar, M. Kordell, G.-Y. Qin, C. Shen,

Outline

Intro, pQCD and scale dependence
Role of scale in jet evolution,
Role of scale in jet observables,
The scale dependence of transport coefficients,
What needs to be done...

QCD is all about scale!

Well known from DIS

What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $Q^{2}=$ getting closer to proton

Well known from DIS
What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $Q^{2}=$ getting closer to proton

Well known from DIS
What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $Q^{2}=$ getting closer to proton

Well known from DIS
What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $Q^{2}=$ getting closer to proton

Well known from DIS

What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $\mathrm{Q}^{2}=$ getting closer to proton

Well known from DIS

What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $\mathrm{Q}^{2}=$ getting closer to proton

Well known from DIS

What the electron sees, depends on $\mathrm{E}, \mathrm{Q}^{2}$

Increasing energy $\mathrm{Q}^{2}=$ getting closer to proton

Jets are complicated,

Jets are complicated,

Jets are complicated,

Jets are complicated,

Jets are complicated,

Many things happen to a jet and the energy deposited by the jet

Jets are complicated,

Many things happen to a jet and the energy deposited by the jet

Everything other than
leading hadrons is strongly affected by the medium

High energy and high virtuality part of shower

- Radiation dominated regime

High energy and high virtuality part of shower

- Radiation dominated regime

High energy and high virtuality part of shower

- Radiation dominated regime

High energy and high virtuality part of shower

- Radiation dominated regime

High energy and high virtuality part of shower

- Radiation dominated regime

MC: MATTER, LBNL-CCNU*, YaJEM

Low virtuality, high energy part

Scattering dominated regime Few, time separated emissions

Low virtuality, high energy part

Scattering dominated regime Few, time separated emissions

Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions

Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions

Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions

Theory: BDMPS, AMY

Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions
$Q^{2}=q T$
T: lifetime of a parton

Theory: BDMPS, AMY

Low virtuality, high energy part

Scattering dominated regime
Few, time separated emissions
$Q^{2}=q T$
T: lifetime of a parton

Theory: BDMPS, AMY MC: MARTINI*, JEWEL*

Low virtuality low energy part

Low virtuality low energy part

- Many of these partons are absorbed by the medium

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled! (LBNL-CCNU, YaJEM, JEWEL)

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT

Low virtuality low energy part

- Many of these partons are absorbed by the medium
- Cannot be described by pQCD
- Modeled! (LBNL-CCNU, YaJEM, JEWEL)
- Scale of parton same as scale of medium
- AdS/CFT
P. Chesler, W. Horowitz J. Casalderrey-Solana,
G. Milhano, D. Pablos, K. Rajagopal

Grand picture (leading hadrons)

In a static brick

Grand picture (leading hadrons)

In a static brick

Grand picture (leading hadrons)

In a static brick

Grand picture (leading hadrons)

In a static brick

Grand picture (leading hadrons)

In an expanding QGP

Grand picture (leading hadrons)

In an expanding QGP

Energy deposition-thermalization

Strong coupling,
Energy thermalization AdS-CFT

Soft wide angle radiation
 AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Everything changes with scale in jet quenching

Strong coupling, Energy thermalization AdS-CFT

Soft wide angle radiation

Strong coupling, AdS-CFT

Energy thermalization

Everything changes with scale in jet quenching

Strong coupling, AdS-CFT

Transport coefficients partons in a dense medium

$$
p_{z}^{2} \simeq E^{2}-p_{\perp}^{2}
$$

$$
p^{+} \simeq p_{\perp}^{2} / 2 p^{-}
$$

$$
D\left(\frac{\vec{p}_{h}}{\mid \vec{p}+\vec{k}_{\perp}}, m_{j}^{2}\right)
$$

$$
\hat{q}=\frac{\left\langle p_{\perp}^{2}\right\rangle_{L}}{L} \quad \begin{aligned}
& \text { Transverse momentum } \\
& \text { diffusion rate }
\end{aligned}
$$

$$
D\left(\frac{\left.p_{n}, m_{j}^{2}\right)}{p-k}\right) \hat{e}=\frac{\langle\Delta E\rangle_{L}}{L}
$$

Elastic energy loss rate
also diffusion rate e_{2}

By definition, describe how the medium modifies the jet parton!

In general, 2 kinds of transport coefficients

Type I: which quantify how the medium changes the jet

$$
\begin{array}{lc}
\hat{q}\left(E, Q^{2}\right) & \hat{q}_{4}\left(E, Q^{2}\right)=\frac{\left\langle p_{T}^{4}\right\rangle-\left\langle p_{T}^{2}\right\rangle^{2}}{L} \cdots \\
\hat{e}_{2}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{2}\right\rangle}{L} \quad \hat{e}_{4}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{4}\right\rangle-\left\langle\delta E^{2}\right\rangle^{2}}{L} \cdots
\end{array}
$$

$\hat{e}\left(E, Q^{2}\right)$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale
$\delta T^{\mu \nu}$

In general, 2 kinds of transport coefficients

Type I: which quantify how the medium changes the jet

$$
\hat{q}\left(E, Q^{2}\right)
$$

$$
\hat{q}_{4}\left(E, Q^{2}\right)=\frac{\left\langle p_{T}^{4}\right\rangle-\left\langle p_{T}^{2}\right\rangle^{2}}{L} \ldots
$$

$$
\hat{e}\left(E, Q^{2}\right)
$$

$$
\hat{e}_{2}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{2}\right\rangle}{L}
$$

$$
\hat{e}_{4}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{4}\right\rangle-\left\langle\delta E^{2}\right\rangle^{2}}{L} \ldots
$$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale

In general, 2 kinds of transport coefficients

Type I: which quantify how the medium changes the jet

$$
\hat{q}\left(E, Q^{2}\right)
$$

$$
\hat{q}_{4}\left(E, Q^{2}\right)=\frac{\left\langle p_{T}^{4}\right\rangle-\left\langle p_{T}^{2}\right\rangle^{2}}{L} \ldots
$$

$\hat{e}\left(E, Q^{2}\right)$

$$
\hat{e}_{2}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{2}\right\rangle}{L}
$$

$$
\hat{e}_{4}\left(E, Q^{2}\right)=\frac{\left\langle\delta E^{4}\right\rangle-\left\langle\delta E^{2}\right\rangle^{2}}{L} \ldots
$$

Type 2: which quantify the space-time structure of the deposited energy momentum at the hydro scale
$\delta T^{\mu \nu}$

In all calculations presented

bulk medium described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it Fit the $\hat{\mathrm{q}}$ for the initial T in the hydro in central coll.

Qख

$$
\begin{aligned}
& \hat{q}(\vec{r}, t)=\hat{q}_{0} \frac{s(\vec{r}, t)}{s_{0}} \\
& S_{0}
\end{aligned}
$$

From RHIC to LHC circa 2012

Reasonable agreement with data,
no separate normalization at LHC
W/O any non-trivial x-dependence (E dependence)

Results from the JET collaboration

Do separate fits to the RHIC and LHC data for maximal \hat{q} without assuming any kink in the \hat{q} vs T^{3} curve

Results from the JET collaboration

K. Burke et al.

Do separate fits to the RHIC and LHC data for maximal \hat{q} without assuming any kink in the \hat{q} vs T^{3} curve

Non-Monotonic behavior what you may think this means!

T

If this is true, must effect the centrality dependence of R_{AA}, v_{2}, and its centrality dependence at a given collision energy

LHC R $\mathrm{RAA}_{\text {without a bump in } \hat{\mathrm{q}} / \mathrm{T}^{3} .}$

v_{2} at LHC without a bump in $\hat{\mathrm{q}} / \mathrm{T}^{3}$

V_{2} at RHIC without a bump in $\hat{\mathrm{q}} / \mathrm{T}^{3}$

Calculating \hat{q} with more care

$$
\begin{aligned}
W(k) & =\frac{g^{2}}{2 N_{c}}\left\langle q^{-} ; M\right| \int d^{4} x d^{4} y \bar{\psi}(y) A(y) \psi(y) \\
& \times\left|q^{-}+k_{\perp} ; X\right\rangle\left\langle q^{-}+k_{\perp} ; X\right| \\
& \times \bar{\psi}(x) A(x) \psi(x)\left|q^{-} ; M\right\rangle
\end{aligned}
$$

in terms of W , we get

$$
\hat{q}=\sum_{k} k_{\perp}^{2} \frac{W(k)}{t},
$$

Final state is close to "on-shell"

$$
\delta\left[(q+k)^{2}\right] \simeq \frac{1}{2 q^{-}} \delta\left(k^{+}-\frac{k_{\perp}^{2}}{2 q^{-}}\right)
$$

Also we are calculating in a finite temperature heat

$$
\begin{aligned}
& \hat{q}=\frac{4 \pi^{2} \alpha_{s}}{N_{c}} \int \frac{d y^{-} d^{2} y_{\perp}}{(2 \pi)^{3}} d^{2} k_{\perp} e^{-i \frac{k_{1}^{2}}{2 q^{-}} y^{-}+i \vec{k}_{\perp} \cdot y_{\perp}} \\
& \langle n| F^{+,}{ }_{\perp}\left(y^{-}, \vec{y}_{\perp}\right) F_{\perp}^{+}(0)|n\rangle \\
& \hat{q}\left(q^{+}, q^{-}\right) \quad 2 q^{-} q^{+}=Q^{2}, \frac{k_{\perp}^{2}}{2 q^{-}}=x P^{+}
\end{aligned}
$$

Can evaluate on Lattice!

What one usually does at this point

- Take the q^{-}to be infinity

$$
\begin{gathered}
\hat{q} \sim \int \frac{d y^{-} d^{2} y_{\perp}}{(2 \pi)^{3}} d^{2} k_{\perp} e^{i \vec{k}_{\perp} \cdot \vec{y}_{\perp}}\langle n| F^{+},{ }_{\perp}\left(y^{-}, \vec{y}_{\perp}\right) F_{\perp}^{+}(0)|n\rangle \\
=\int \frac{d y^{-}}{2 \pi}\langle n| F^{+},{ }_{\perp}\left(y^{-}\right) F_{\perp}^{+}(0)|n\rangle
\end{gathered}
$$

This makes \hat{q} into a one dimensional quantity an assumption of small x or high E.

\hat{q} at vanishing x has been taken to NLO

Z. Kang, E. Wang, X.-N. Wang, H. Xing, PRL 112 (2014) 102001
T. Liou, A. Mueller, B. Wu, Nucl.Phys. A916 (2013) 102-125
J. Blaizot, Y. Mehtar-tani, arXiv:1403.2323 [hep-ph]
E. Iancu, arXiv:1403.1996 [hep-ph]

None of these NLO corrections have been tested in phenomenology.

What is x for a QGP

- Bjorken x in DIS on a proton

$$
x_{B}=\frac{Q^{2}}{2 p \cdot Q}
$$

- In rest frame of proton

$$
x_{B}=\frac{Q^{2}}{2 E \cdot M}=\frac{\eta}{M}
$$

- In the PDF

$$
\begin{aligned}
& \text { the PDF } f\left(x_{B}\right)=\int \frac{d y^{-}}{2 \pi} e^{i x_{B} P^{+} y^{-}}\langle P| \bar{\psi}\left(y^{-}\right) \frac{\gamma^{+}}{2} \psi|P\rangle \\
& \qquad g(\eta)=\int \frac{d y^{-}}{2 \pi} e^{i \eta y^{-}}\langle P| \bar{\psi}\left(y^{-}\right) \frac{\gamma^{+}}{2} \psi|P\rangle \\
& \text { In the rest frame of the proton, } x \sim \eta
\end{aligned}
$$

We can compare η values between DIS and heavyions

How about x or η dependence of \hat{q}

- The Glauber condition prevents a direct application of this established procedure.

$\delta\left(k^{+}-\frac{k_{\perp}^{2}}{2 q^{-}}\right)$forces the incoming lines off-shell
$\hat{\mathrm{q}}$ is a 3-D object depending on $\mathrm{x}, \mathrm{k} \mathrm{k}$ Like a TMDPDF, at large k_{T} can refactorize to regular PDF X radiated gluon
Contributions start at order $\alpha \mathrm{s}$,

A factorized picture

A factorized picture

Q is the hard scale of the jet $\sim E$
$\mathrm{Q} \lambda$ is a semi-hard scale $\sim(\mathrm{ET})^{1 / 2}, \lambda \rightarrow 0$
$\hat{\mathrm{q}}$ contains all dynamics below $\mathrm{Q} \lambda$

A factorized picture

Q is the hard scale of the jet $\sim E$
$\mathrm{Q} \lambda$ is a semi-hard scale $\sim(\mathrm{ET})^{1 / 2}, \lambda \rightarrow 0$
$\hat{\mathrm{q}}$ contains all dynamics below $\mathrm{Q} \lambda$

Input PDF at $Q^{2}=1 \mathrm{GeV}^{2}$

Sea like

x
Wide Valence

x

Narrow Valence

Putting it all together

Input PDF

$$
G(x)=C x^{a}(1-x)^{b}
$$

making b negative increases strength at $\mathrm{x} \sim 1$

Seems ruled out by fits..

Mass of d.o.f. less than mass of nucleon.

What does this mean?

- Possible resolution of the JET puzzle
- Based on consistent Q^{2} evolution of $\hat{\mathbf{q}}$
- Should have x evolution at high energy
- Applying TMD systematics, may complicate this interpretation.
- \widehat{q} may lie at the intersection of DGLAP and BFKL (previously explored by Casalderray-Solana and Wang)

Going from semi-analytic (eventaveraged) to MC event generators

Some parts are done with much greater accuracy
at low p_{T} sensitive to in-medium frag.

Need a prescription at lower $p_{\text {т. }}$ Used hard cut for partons at $\mathrm{Q}=1 \mathrm{GeV}$ more than a fm inside

More sensitive to multiple scales for full jet

- jets done partonically
- hard cut for $\mathrm{Q}<1 \mathrm{GeV}$ more than 1 fm in
- Should do the $\mathrm{Q}<1 \mathrm{GeV}$ more carefully
- Enter JETSCAPE!

Evidence of multiple scales from multiple-stage Monte Carlos

Switching between one event-generator and the next in a brick @JETSCAPE Phys.Rev. C96 (2017) no.2, 024909
Repeat with hadronization and fluid medium being calculated

Evidence of multiple scales from multiple-stage Monte Carlos

S

t-generator and the next ev. C96 (2017) no.2, 024909 uid medium being calculated

Evidnnenof multinlsconlnc from

Outlook

- We really need to understand/model sub-leading hadronization
- Jets with $\mathrm{R} \sim 0.4$ involve hadrons from the medium
- Jets involve energy deposited from hard partons to medium and then reconstructed in jet (This process needs to be well understood and modeled)
- There is no vacuum jet formation for RHIC and LHC jets $\tau \sim E /(E R)^{2}=1 /\left(E R^{2}\right)=1 \mathrm{GeV}^{-1} \sim 0.2 \mathrm{fm}$ (for $\mathrm{E}=100 \mathrm{GeV}, \mathrm{R}=0.1$).

Near side and away side correlations

A. Majumder, et. al., nucl-th/0412061

A wide range of single particle observables can be explained by a weak coupling formalism

How the jet sees the medium depends on jet scale

How the jet sees the medium depends on jet scale

How the jet sees the medium depends on jet scale

How the jet sees the medium depends on jet scale

I/E or x

How the jet sees the medium depends on jet scale

I/E or x

Sea-like PDF of the QGP

Narrow valence like PDF of QGP

Wide valence like PDF of the QGP

