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Outline
Intro, pQCD and scale dependence 

Role of scale in jet evolution, 

Role of scale in jet observables, 

The scale dependence of transport coefficients, 

What needs to be done… 
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QCD is all about scale!
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Well known from DIS 
What the electron sees, depends on E, Q2

Increasing energy Q2 = geYing closer to proton x =
p

Ph4
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Well known from DIS 
What the electron sees, depends on E, Q2

Increasing energy Q2 = geYing closer to proton x =
p
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Jets are complicated, 

Many things happen
to a jet and the energy

deposited by the jet

Everything other than 
leading hadrons is strongly  

affected by the medium
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High energy and high virtuality 
part of shower

• Radiation dominated regime
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Low virtuality, high energy part 

ScaYering dominated regime 
Few, time separated emissions
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Low virtuality low energy part
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Low virtuality low energy part
• Many of these partons are absorbed by the medium

• Cannot be described by pQCD

• Modeled !  (LBNL-CCNU, YaJEM, JEWEL)

• Scale of parton same as scale of medium

• AdS/CFT 

P. Chesler, W. Horowie J. Casalderrey-Solana,  
G. Milhano, D.  Pablos, K. Rajagopal
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Grand picture (leading hadrons)

In a static brick
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Energy deposition-thermalization 

HT

BDMPS-AMY

Strong coupling, 
AdS-CFT

Strong coupling, 
AdS-CFT Energy thermalization

Energy thermalization

Soft wide angle radiation
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Everything changes with scale in jet quenching
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Elastic energy loss 
rate 

also diffusion rate e2

ê =
��E⇥L

L

Transport coefficients partons  
in a dense medium

p2
z ' E2 � p2

?

Transverse momentum 
diffusion rateq̂ =

hp2
?iL

L

By definition, describe how the medium modifies the jet parton!

p+ ' p2?/2p
�
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In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet

Type 2: which quantify the space-time structure of the  
          deposited energy momentum at the hydro scale

q̂(E,Q2) q̂4(E,Q2) =
hp4T i � hp2T i2

L
. . .

ê4(E,Q2) =
h�E4i � h�E2i2

L
. . .ê2(E,Q2) =

h�E2i
L

ê(E,Q2)

�Tµ⌫ —>
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In all calculations presented 
bulk medium described by viscous fluid dynamics

RAA ⇠
dNAA
dpT dy

Nbin
dNpp

dpT dy

q̂(~r, t) = q̂0
s(~r, t)

s0

s0 = s(T0)

Medium evolves hydro-dynamically as the jet moves through it 
Fit the q for the initial T in the hydro in central coll.^
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Reasonable agreement with data,  
no separate normalization at LHC

W/O any non-trivial x-dependence (E dependence) 

From RHIC to LHC circa 2012
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Results from the JET collaboration

Do separate fits to the RHIC and LHC data for maximal q 
without assuming any kink in the q vs T3 curve

^
^

K. Burke et al. 
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^
^

K. Burke et al. 
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Non-Monotonic behavior 
what you may think this means!

T

q̂(T )
T 3

If this is true, must effect the centrality dependence of RAA,  
v2, and its centrality dependence at a given collision energy
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LHC RAA without a bump in q/T3^
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v2 at LHC without a bump in q/T3^
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v2 at RHIC without a bump in q/T3 ^
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W (k) =
g

2

2Nc
hq�;M |

Z
d

4
xd

4
y ̄(y) 6A(y) (y)

⇥ |q� + k?;Xihq� + k?;X|
⇥  ̄(x) 6A(x) (x)|q�;Mi

q̂ =
X

k

k2
?

W (k)
t

,in terms of  W, we get

q̂Calculating         with more care
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Final state is close to ``on-shell’’ 

�[(q + k)2] ' 1
2q�

�

✓
k+ � k2

?
2q�

◆
.

Also we are calculating in a finite temperature heat 
bath 

2q�q+ = Q

2
,

k

2
?

2q�
= xP

+q̂(q+, q�)

q̂ =
4⇡2↵s

Nc

Z
dy�d2y?
(2⇡)3

d2k?e
�i

k2
?

2q�
y�+i~k?· ~y?

hn|F+,
?(y

�, ~y?)F
+
? (0)|ni

Can evaluate on LaYice!
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What one usually does at this point
• Take the q— to be infinity

This makes      into a one dimensional quantity 
an assumption of small x or high E. 

q̂

q̂ ⇠
Z

dy�d2y?
(2⇡)3

d2k?e
i~k?·~y?hn|F+,

?(y
�, ~y?)F

+
? (0)|ni

=

Z
dy�

2⇡
hn|F+,

?(y
�)F+

? (0)|ni
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Z. Kang, E. Wang, X.-N. Wang, H. Xing, PRL 112 (2014) 102001 

T. Liou, A. Mueller, B. Wu, Nucl.Phys. A916 (2013) 102-125 

J. Blaizot, Y. Mehtar-tani, arXiv:1403.2323 [hep-ph] 

E. Iancu, arXiv:1403.1996 [hep-ph] 

None of these NLO corrections have been tested in 
phenomenology.  

q at vanishing x has been taken to NLO ^
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What is x for a QGP
• Bjorken x in DIS on a proton  

• In rest frame of proton  

• In the PDF

xB =
Q

2

2p ·Q

xB =
Q

2

2E ·M =
⌘

M

f(x
B

) =

Z
dy

�

2⇡
e

ixBP

+
y

�
hP | ̄(y�)�

+

2
 |P i

g(⌘) =

Z
dy�

2⇡
ei⌘y

�
hP | ̄(y�)�

+

2
 |P i

In the rest frame of the proton, x ~ η 

We can compare η values between DIS and heavy-
ions
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How about x or η dependence of q
• The Glauber condition prevents a direct application 

of this established procedure. 

�

✓
k+ � k2?

2q�

◆
forces the incoming lines  off-shell

^

q is a 3-D object depending on x, kT 

Like a TMDPDF,   
at large kT can refactorize to  
regular PDF X radiated gluon  
Contributions start at order αS , 

^
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A factorized picture

p ⇠ Q(1, �2, �)

k ⇠ Q(�2, �2, �)k ⇠ Q(�2, �2, �)

q ⇠ Q(�2, 1, �)q� =
q0 + q3p

2
q� ⇠ Q

27
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Input PDF at Q2 = 1 GeV2

x x x

Sea like Wide Valence Narrow Valence
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PuYing it all together

29



Input PDF

G(x) = Cx

a(1� x)b

making b negative increases 
strength at x ~ 1  

Seems ruled out by fits.. 

Mass of d.o.f. less than mass  
of nucleon.
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What does this mean?

• Possible resolution of the JET puzzle 

• Based on consistent Q2 evolution of q 

• Should have x evolution at high energy  

• Applying TMD systematics, may complicate this 
interpretation.  

• q may lie at the intersection of DGLAP and BFKL  
(previously explored by Casalderray-Solana and Wang)
^

^

31



Going from semi-analytic (event-
averaged) to MC event generators

30 60 90
pT (GeV)
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CMS
ALICE

π: 5-10%

π: 20-30%

Pb-Pb @ 2.76 TeV

π: 0-5%

π: 40-50%

Some parts are done 
with much greater 
accuracy 

at low pT sensitive to  
in-medium frag. 

Need a prescription at 
lower pT. Used hard cut 
for partons at Q=1GeV 
more than a fm inside 
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More sensitive to multiple 
scales for full jet

• jets done partonically 

• hard cut for Q<1GeV  
more than 1fm in 

• Should do the 
Q<1GeV  
more carefully 

• Enter JETSCAPE!
50 100 150 200 250 300

pT (GeV)
0

0.2

0.4

0.6

0.8

1

1.2

R A
A

MATTER jet R=0.3
ATLAS hadron
CMS jet R=0.3
MATTER pion

Pb-Pb @ 2.76 TeV   0-5%
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Evidence of multiple scales from 
multiple-stage Monte Carlos
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Switching between one event-generator and the next  
in a brick @JETSCAPE Phys.Rev. C96 (2017) no.2, 024909 

Repeat with hadronization and fluid medium being calculated

dE/dθ	of	daughter	partons	(jet	shape)	

•  In-medium	evoluTon	changes	the	jet	shape	–	depletes	energy	in	small	
cone	and	enhances	energy	in	large	cone.		

•  LBT	is	more	effecTve	than	MATTER	in	shiwing	energy	distribuTon	into	
larger	angle	since	elasTc	scaZering	is	included	in	LBT.	

•  InteresTng	non-monotonic	behavior	at	Q0	=	1	GeV	--	enhanced	
Sudakov	type	splieng	at	very	small	r	and	LBT	scaZering	at	large	r.	
(Partly	understand	the	jet	shape	measurement	even	with	a	brick.)	 16	
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Outlook
• We really need to understand/model  

 sub-leading  hadronization 

• Jets with R ~ 0.4 involve hadrons from the medium 

• Jets involve energy deposited from hard partons to 
medium and then reconstructed in jet (This process 
needs to be well understood and modeled) 

• There is no vacuum jet formation for RHIC and LHC jets  
τ ~ E/(E R)2 =  1/ (ER2) = 1 GeV-1 ~ 0.2 fm  
(for E =100 GeV,  R = 0.1).
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Near side and away side correlations

A wide range of single particle observables can be explained 
by a weak coupling formalism
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a lot or fluctuation  

included in it.  
Looks different at different 

scales

1/E or x

How the jet sees the medium depends on jet scale
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Sea-like PDF of the QGP
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Narrow valence like PDF of QGP
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Wide valence like PDF of the QGP
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