4-jet production with kt-factorization plus parton showers

Mirko Serino

Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

8th International Workshop on MPI’s @LHC
San Cristóbal de las Casas, Chiapas, Mexico
November 28 - December 3 2016

Work in collaboration with
Marcin Bury, Andreas van Hameren, Hannes Jung and Krzysztof Kutak

Supported by NCN grant DEC-2013/10/E/ST2/00656 of Krzysztof Kutak
1. 4-jet production in kt-factorization: theoretical framework and results without parton showers

2. 4-jet production in kt-factorization: preliminaries on Single Parton Scattering plus parton showers

3. Improving the search for DPS: asymmetric cuts and new variables

4. Summary and perspectives

5. Backup Slides
High-Energy-factorisation

\[
\sigma_{h_1, h_2 \rightarrow q\bar{q}} = \int d^2k_1 \bot d^2k_2 \bot \frac{dx_1}{x_1} \frac{dx_2}{x_2} \mathcal{F}_g(x_1, k_{1 \bot}) \mathcal{F}_g(x_2, k_{2 \bot}) \hat{\sigma}_{gg} \left(\frac{m^2}{x_1 x_2 s}, \frac{k_{1 \bot}}{m}, \frac{k_{2 \bot}}{m} \right)
\]

where the \(\mathcal{F}_g \)'s are the gluon densities, obeying BFKL, BK, CCFM evolution equations, and \(\hat{\sigma} \) the gauge invariant parton cross section (!!!)

Non negligible transverse momentum \(\Leftrightarrow \) small-\(x \) physics.

Momentum parameterisation:

\[
k_1^\mu = x_1 p_1^\mu + k_1^\mu \bot, \quad k_2^\mu = x_2 p_2^\mu + k_2^\mu \bot \quad \text{for} \quad p_i \cdot k_i = 0 \quad k_i^2 = -k_i^{\mu \bot} \quad i = 1, 2
\]
We had a couple of papers on Double Parton Scattering (DPS) in 4-jet production:

K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren

- Approach: pure k_T-factorization approach with fully gauge-invariant tree-level matrix elements: KaTie Monte Carlo by Andreas van Hameren

- Conclusions: the symmetric cuts of the only existing analysis of 4-jet production, Phys.Rev. D89 (2014) no.9, 092010, suppress DPS because of a phase-space effect to be discussed later \Rightarrow recommending asymmetric cuts in a future analysis

- Idea to move further: interface KaTie with the CASCADE parton shower Monte Carlo by Hannes Jung and collaborators.
Introducing Double Parton Scattering

For a review of DPS: Diehl, Ostermeier, Schafer, JHEP 1203 (2012) 089
For more formal approach to DPS ⇒ Diehl, Kasemets and Gaunt’s talks

\(\text{DPS} \equiv \text{the simultaneous occurrence of two partonic hard scatterings in the same proton-proton collision} \)

\[
\sigma^D = S \sum_{i,j,k,l} \int \Gamma_{ij}(x_1, x_2, b; t_1, t_2) \Gamma_{kl}(x'_1, x'_2, b; t_1, t_2) \hat{\sigma}(x_1, x'_1) \hat{\sigma}(x_2, x'_2) \, dx_1 \, dx_2 \, dx'_1 \, dx'_2 \, d^2 b
\]

Usual assumption: separation of longitudinal and transverse DOFs:

\[
\Gamma_{ij}(x_1, x_2, b; t_1, t_2) = D_{ij}^h(x_1, x_2; t_1, t_2) \, F^i(b) = D_{ij}^h(x_1, x_2; t_1, t_2) \, F(b)
\]

- Longitudinal correlations, most often ignored or assumed to be negligible, especially at small \(\times \):
 \[
 D_{ij}^h(x_1, x_2; t_1, t_2) = D^i(x_1; t_1) \, D^j(x_2; t_2)
 \]
- Transverse correlation, assumed to be independent of the parton species, taken into account via \(\sigma_{\text{eff}}^{-1} = \int d^2 b \, F(b)^2 \approx (15mb)^{-1} \) (CDF and D0)

Usual final kind-of-crafty formula:

\[
\sigma^D = \frac{S}{\sigma_{\text{eff}}} \sum_{i_1 j_1 k_1 l_1, i_2 j_2 k_2 l_2} \sigma(i_1 j_1 \rightarrow k_1 l_1) \times \sigma(i_2 j_2 \rightarrow k_2 l_2)
\]
Survival probability without emissions

Kimber, Martin, Ryskin prescription, '01:

\[T_s(\mu^2, k^2) = \exp\left(-\int_{\mu^2}^{k^2} \frac{dk'^2}{k'^2} \frac{\alpha_s(k'^2)}{2\pi} \right. \]
\[\left. \times \sum_{a'} \int_0^{1-\Delta} dz' P_{aa'}(z') \right) \]

\[\Delta = \frac{\mu}{\mu + k}, \quad \mu = \text{hard scale} \]

\[F(x, k^2, \mu^2) \sim \partial_{\lambda^2} \left(T_s(\lambda^2, \mu^2) \times g(x, \lambda^2) \right) \bigg|_{\lambda^2 = k^2} \]

DLC 2016 (Double Log Coherence)
K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren, JHEP 1604 (2016) 175
4-jet production with kt-factorization plus parton showers

4-jet production in kt-factorization: theoretical framework and results without parton showers

Technical framework

KaTie (A. van Hameren): https://bitbucket.org/hameren/KaTie, arXiv:1611.00680
- complete Monte Carlo program for tree-level calculations of any process within the Standard Model; any initial-state partons on-shell or off-shell; numerical Dyson-Schwinger recursion to calculate helicity amplitudes
- CASCADE-2.4.07: DGLAP or CCFM initial and final state parton showers (Hannes Jung et al.)

- Only \(u \) and \(d \) initial state quarks, final states with all the \(N_f = 5 \) lightest flavours.

- **Running** \(\alpha_s \) from the MSTWnlo68cl PDF sets

- **Massless quarks approximation** \(E_{cm} = 7/8 \) TeV \(\Rightarrow m_q/\bar{q} = 0. \)

- **Scale** \(\mu_R = \mu_F \equiv \mu = \frac{H_T}{2} \equiv \frac{1}{2} \sum_i p_T^i \), \(\) (sum over final state particles)

We don’t take into account correlations in DPS: \(D(x_1, x_2, \mu) = f(x_1, \mu) f(x_2, \mu) \).

There are attempts to go beyond this approximation:

Golec-Biernat, Stasto: arXiv:1611.02033, **WITH** \(k_T \) dependence

Work by Rinaldi and collaborators \(\Rightarrow \) see Matteo’s talk
Softer cuts: do we really see DPS in CMS data?

CMS collaboration
Phys. Rev. D89 (2014) no.9, 092010

\[p_T(1, 2) \geq 50 \text{ GeV}, \quad p_T(3, 4) \geq 20 \text{ GeV} \]

\[|\eta| \leq 4.7, \quad R = 0.5 \]

Potential smoking gun for DPS:

\[\Delta S = \arccos\left(\frac{\vec{p}_T(j_{1\text{hard}}, j_{2\text{hard}}) \cdot \vec{p}_T(j_{1\text{soft}}, j_{2\text{soft}})}{|\vec{p}_T(j_{1\text{hard}}, j_{2\text{hard}})| \cdot |\vec{p}_T(j_{1\text{soft}}, j_{2\text{soft}})|} \right) \]

\[\vec{p}_T(j_i, j_k) = p_{T,i} + p_{T,j} \]

Angle between the soft and the hard jet pair: expected to be flat for DPS.

No collinear MonteCarlo manages to really describe all the data over the whole range. What can k_T-factorization say about it?
We roughly describe the data via pQCD effects within our HEF approach which are (equally partially) described by parton-showers and soft MPIs by CMS. K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren, JHEP 1604 (2016) 175

- We seem to overshoot the data when adding DPS
- Natural to ask what happens when we include initial and final state radiation \Rightarrow we need to match parton-level k_T-factorization with parton showers.
Adding parton showers to k_T factorization

Matching the hard off-shell matrix elements with parton showers:
- Generate the hard matrix element in full High Energy Factorization: KaTie
- Add final state CCFM or DGLAP parton showers: CASCADE
- Perform backward evolution in order to have the transverse momentum in the hard matrix element unfolded to initial state radiation: CASCADE
- Reconstruct jets with anti-k_T algorithm: FastJet

Difference with respect to the collinear generators (MadGraph, Pythia, etc.):
We do not need to perform boosts and rotations of the hard matrix element in order to accommodate for the transverse momentum. Exact kinematics from the very beginning.

This is because this comes directly from the matrix element in a fully gauge invariant way (⇒ see Andreas van Hameren’s talk). So, with respect to the fully collinear case, we include the additional hard dynamics coming form transverse momentum.
ΔS: k_T factorization plus DGLAP parton showers

- We generate matrix elements with the restriction $k_{T,i}^2 < \mu^2$, in order to stick to the transverse momentum ordering.
- We undershoot the data both with and without parton showers and remnant treatment.
- This could be expected, since the restriction imposed brings the dynamics closer to the collinear case.
ΔS: k_T factorization plus CCFM parton showers

- We generate matrix elements without the restriction $k_{T,i}^2 < \mu^2$.
- Jets equally hard or harder than those from the hard matrix element can come from the showering.
- The predictions without parton showers roughly agrees with the data.
- Once we include showers and full remnant treatment, we see that we recover a similar result as in the collinear case.
- We conclude that, in this ME+PS scenario, High energy Factorization suggests the need for MPIs (!?).
ΔS: k_T factorization plus CCFM parton showers with two b-tagged jets

- We generate matrix elements without the restriction $k_{T,i}^2 < \mu^2$.
- Jets equally hard or harder than those from the hard matrix element can come from the showering.
- The predictions without parton showers now do not agree with the data.
- Once we include showers and full remnant treatment, we are even more off.
- We conclude that, in this ME+PS scenario, High energy Factorization suggests the need for MPIs (?) \Rightarrow Paolo Gunnellini's talk.
DPS effects in collinear and HEF: the problem of asymmetric cuts

DPS effects are expected to become significant for lower cuts on the final state transverse momenta, like the ones of the CMS collaboration, Phys.Rev. D89 (2014) no.9, 092010

\[p_T(1,2) \geq 50 \text{ GeV}, \quad p_T(3,4) \geq 20 \text{ GeV}, \quad |\eta| \leq 4.7, \quad R = 0.5 \]

CMS collaboration: \[\sigma_{tot} = 330 \pm 5 \text{ (stat.)} \pm 45 \text{ (syst.)} \text{ nb} \]
LO collinear factorization: \[\sigma_{SPS} = 697 \text{ nb}, \quad \sigma_{DPS} = 125 \text{ nb}, \quad \sigma_{tot} = 822 \text{ nb} \]
LO HEF \(k_T \)-factorization: \[\sigma_{SPS} = 548 \text{ nb}, \quad \sigma_{DPS} = 33 \text{ nb}, \quad \sigma_{tot} = 581 \text{ nb} \]

In HE factorization DPS gets suppressed and does not dominate at low \(p_T \)

Counterintuitive result from well-tested perturbative framework
\[\Rightarrow \text{ phase space effect?} \]
Higher order corrections to 2-jet production

Symmetric cuts rule out from integration final states in which the momentum imbalance due to the initial state non vanishing transverse momenta gives to one of the jets a lower transverse momentum than the threshold.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{\#jets} & \textbf{ATLAS} & \textbf{LO} & \textbf{NLO} \\
\hline
2 & 620 \pm 1.3^{+110}_{-66} \pm 24 & 958(1)^{+316}_{-221} & 1193(3)^{+130}_{-135} \\
3 & 43 \pm 0.13^{+12}_{-6.2} \pm 1.7 & 93.4(0.1)^{+50.4}_{-30.3} & 54.5(0.5)^{+2.2}_{-19.9} \\
4 & 4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24 & 9.98(0.01)^{+7.40}_{-3.95} & 5.54(0.12)^{+0.08}_{-2.44} \\
\hline
\end{tabular}
\end{table}

Figure: The transverse momentum distribution of the leading (long dashed line) and subleading (long dashed-dotted line) jet for the dijet production in HEF.
Reconciling HE and collinear factorisation: asymmetric p_T cuts

In order to open up wider region of soft final states and thereof expected that the DPS contribution increases

\[p_T(1) \geq 35 \text{GeV}, \quad p_T(2,3,4) \geq 20 \text{ GeV}, \quad |\eta| < 4.7, \quad \Delta R > 0.5 \]

LO collinear factorization: \(\sigma_{SPS} = 1969 \text{ nb}, \quad \sigma_{DPS} = 514 \text{ nb}, \quad \sigma_{tot} = 2309 \text{ nb} \)

LO HEF k_T-factorization: \(\sigma_{SPS} = 1506 \text{ nb}, \quad \sigma_{DPS} = 297 \text{ nb}, \quad \sigma_{tot} = 1803 \text{ nb} \)

DPS dominance pushed to even lower p_T but restored in HE factorization as well

Next natural step: fully asymmetric cuts!
Why do we want it so bad?

- Clean channel to see DPS (well, so far...): \(p\ p \Rightarrow W\ j\ j \) (exclusive)
- Exclusiveness makes the channel clean: just reject all events with \(\#j > 2 \): accepted jets from DPS around back-to-back configuration! Extracted fraction of DPS \(f_{DPS} = 0.055 \pm 0.002 \) (stat.) \(\pm 0.014 \) (syst.)
- No chance that we can do anything exclusive on the two jets in four-jet production. See Paolo Gunnellini’s take-home statement: CMS sees MPIs; good, but **we want specifically DPS**! \(\Rightarrow \) where does the theory tell us that the needed enhancement must be DPS itself? At the pure ME level and \(\sigma_{eff} = 15\,mb \) with asymmetric cuts we get \(f_{DPS} \simeq 0.19 \) !!!
It is interesting to look for kinematic variables which could make DPS apparent.

The maximum rapidity separation in the four jet sample is one such variable, especially at 13 GeV.

for $\Delta Y > 6$ the total cross section is dominated by DPS.
Pinning down double parton scattering: $\Delta \phi_{3}^{\text{min}}$ - azimuthal separation

K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren
Phys.Rev. D94 (2016) no.1, 014019

Definition: $\Delta \phi_{3}^{\text{min}} = \min_{i,j,k[1,4]} (|\phi_i - \phi_j| + |\phi_j - \phi_k|)$, $i \neq j \neq k$

- Proposed by ATLAS in *JHEP 12 105 (2015)* for high p_T analysis
- High values favour configurations closer to back-to-back, i.e. DPS
- For $\Delta \phi_{3}^{\text{min}} \geq \pi/2$ the total cross section is dominated by DPS
Summary and perspectives

- **Previous results**: HE factorisation smears out the DPS contribution to the cross section for less central jet, pushing the DPS-dominance region to lower p_T, but asymmetric cuts are in order: initial state transverse momentum generates asymmetries in the p_T of final state jet pairs.

- ΔS variables, potential DPS smoking gun, does not really well without DPS with final state PS. With parton showers + remnant treatment: hardest k_T not always coming from the hard matrix element

- We will scan various PDFs, in order to gauge the dependence of these results on them and we will consistently perform an initial state evolution with KMR PDFs, improving the preliminary results showcased in this talk.

- It will be interesting to have an experimental analysis with cuts which are completely asymmetric and soft, in order to enhance DPS. We are going to produce predictions with parton showers also for this configuration, because now CMS plans to release such an analysis.

- Personal interest: improving the pocket-formula framework integrating the more formal developments \Rightarrow Diehl, Gaunt, Kasemets’ talks. First step: include the effect of DPDFs.
Validation with hard jets: total cross sections

We reproduce all the LO results (only SPS) for $pp \to n\text{ jets}$, $n = 2, 3, 4$ published in BlackHat collaboration, Phys.Rev.Lett. 109 (2012) 042001

Asymmetric cuts for hard central jets

$p_T \geq 80\text{ GeV}$, for leading jet

$p_T \geq 60\text{ GeV}$, for non leading jets

$|\eta| \leq 2.8$, $R = 0.4$

PDFs set: MSTW2008LO@68cl

$\sigma(\geq 2\text{ jets}) = 958^{+316}_{-221}$ $\sigma(\geq 3\text{ jets}) = 93.4^{+50.4}_{-30.3}$ $\sigma(\geq 4\text{ jets}) = 9.98^{+7.40}_{-3.95}$

Cuts are too hard to pin down DPS and/or benefit from HEF: 4-jet case

Collinear case $\left\{ \begin{array}{ll}
9.98^{+7.40}_{-3.95} & \text{SPS} \\
0.094^{+0.06}_{-0.036} & \text{DPS}
\end{array} \right.$

HEF case $\left\{ \begin{array}{ll}
10.0^{+6.9}_{-5.3} & \text{SPS} \\
0.05^{+0.054}_{-0.029} & \text{DPS}
\end{array} \right.$
Validation with hard jets: differential distribution

Most recent ATLAS paper on 4-jet production in proton-proton collision:

ATLAS, JHEP 1512 (2015) 105

\[p_T \geq 100 \text{ GeV}, \quad \text{for leading jet} \]

\[p_T \geq 64 \text{ GeV}, \quad \text{for non leading jets} \]

\[|\eta| \leq 2.8, \quad R = 0.4 \]

- All channels included and running α_s @ NLO
- Good agreement with data
- DPS effects are manifestly too small for such hard cuts: this could be expected.
Conjectured formulas for 2 and 4 jets production:

\[\sigma_{2-jets} = \sum_{i,j} \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \ d^2k_{T1} d^2k_{T2} \ F_i(x_1, k_{T1}, \mu_F) F_j(x_2, k_{T2}, \mu_F) \]

\[\times \frac{1}{2^s} \prod_{l=i}^2 \frac{d^3k_l}{(2\pi)^3 2E_l} \Theta_{2-jet} (2\pi)^4 \delta \left(P - \sum_{l=1}^2 k_i \right) |\mathcal{M}(i^*, j^* \to 2 \text{ part.})|^2 \]

\[\sigma_{4-jets} = \sum_{i,j} \int \frac{dx_1}{x_1} \frac{dx_2}{x_2} \ d^2k_{T1} d^2k_{T2} \ F_i(x_1, k_{T1}, \mu_F) F_j(x_2, k_{T2}, \mu_F) \]

\[\times \frac{1}{2^s} \prod_{l=i}^4 \frac{d^3k_l}{(2\pi)^3 2E_l} \Theta_{4-jet} (2\pi)^4 \delta \left(P - \sum_{l=1}^4 k_i \right) |\mathcal{M}(i^*, j^* \to 4 \text{ part.})|^2 \]

- PDFs and matrix elements well defined.
- No rigorous factorization proof around (proving gauge invariance at loop order could help with factorization proofs in the TMD case: see Tuesday’s morning session discussion)
- Reasonable description of data justifies this formula a posteriori
4-jet production: Single Parton Scattering (SPS)

We take into account all the (according to our conventions) 20 channels.

Here q and q' stand for different quark flavours in the initial (final) state.

We do not introduce K factors, amplitudes@LO.

$\sim 95\%$ of the total cross section

There are 19 different channels contributing to the cross section at the parton-level:

$$gg \rightarrow 4g, \quad gg \rightarrow q\bar{q} 2g, \quad qg \rightarrow q 3g, \quad q\bar{q} \rightarrow q\bar{q} 2g, \quad qq \rightarrow qq 2g, \quad qq' \rightarrow qq' 2g,$$

$$gg \rightarrow q\bar{q}q\bar{a}, \quad gg \rightarrow q\bar{q}q' \bar{a}', \quad qg \rightarrow qgq\bar{a}, \quad qg \rightarrow qgq' \bar{a'},$$

$$q\bar{a} \rightarrow 4g, \quad q\bar{a} \rightarrow q' \bar{a}' 2g, \quad q\bar{a} \rightarrow q\bar{a}q\bar{a}, \quad q\bar{a} \rightarrow q\bar{a}q' \bar{a}', \quad q\bar{a} \rightarrow q' \bar{a}' q' \bar{a'},$$

$$q\bar{a} \rightarrow q' \bar{a}' q'' \bar{a''}, \quad qq \rightarrow qqq\bar{a}, \quad qq \rightarrow qqq' \bar{a'}, \quad qq' \rightarrow qq' q\bar{a}.$$
4-jet production: Double parton scattering (DPS)

\[\sigma = \sum_{i,j,a,b;k,l,c,d} \frac{S}{\sigma_{\text{eff}}} \sigma(i,j \rightarrow a,b) \sigma(k,l \rightarrow c,d) \]

\[S = \begin{cases}
1/2 & \text{if } i,j = k,l \text{ and } a,b = c,d \\
1 & \text{if } i,j \neq k,l \text{ or } a,b \neq c,d
\end{cases} \]

\[\sigma_{\text{eff}} = 15 \text{ mb}, \text{(CDF, D0 and LHCb collaborations)} , \]

Experimental data may hint at different values of \(\sigma_{\text{eff}} \); main conclusions not affected

In our conventions, 9 channels from \(2 \rightarrow 2 \) SPS events,

\#1 = gg \rightarrow gg, \quad \#6 = u\bar{u} \rightarrow d\bar{d} \\
\#2 = gg \rightarrow u\bar{u}, \quad \#7 = u\bar{u} \rightarrow gg \\
\#3 = ug \rightarrow ug, \quad \#8 = uu \rightarrow uu \\
\#4 = gu \rightarrow ug, \quad \#9 = ud \rightarrow ud \\
\#5 = u\bar{u} \rightarrow u\bar{u} \\

\Rightarrow 45 \text{ channels for the DPS; only 14 contribute to } \geq 95\% \text{ of the cross section}:

(1,1), (1,2), (1,3), (1,4), (1,8), (1,9), (3,3) \\
(3,4), (3,8), (3,9), (4,4), (4,8), (4,9), (9,9)