Factorisation in diffractive ep interactions

Alice Valkárová Charles University, Prague

8th International Workshop on Multiple Partonic Interactions at the LHC, San Cristóbal de las Casas, 2016

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}=318$ GeV
- data taken in 1992-2007
- HERA I,II: ~ 500 pb⁻¹ per experiment
- H 1 & ZEUS 4π detectors

Bjorken scaling variable $x = Q^2/2qP$

 $Q^2 < 1$ GeV² photoproduction (yp) $Q^2 > 1 \text{ GeV}^2$ Deep Inelastic Scattering (DIS)

Inelasticity y = Pq/Pk

Diffractive kinematics

Non-diffractive ep scattering

- Q²- virtuality of the photon
- $Q^2 \sim 0 \text{ GeV}^2 \rightarrow \text{photoproduction}$
- $Q^2 >> 0 \text{ GeV}^2 \rightarrow \text{DIS}$
- W total hadronic energy

adronic energy

MPI workshop, San Cristobal de las Casas

Diffractive scattering

momentum fraction of color singlet exchange

$$x_{I\!\!P} = m{\xi} = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

fraction of exchange momentum, coupling to γ

$$eta=rac{Q^2}{Q^2+M_X^2}=x_{q/I\!\!P}=rac{x}{x_{I\!\!P}}$$

4-momentum transfer squared (if proton is measured)

$$t = (p - p')^2$$

- $M_y = m_p$ proton stays intact
- $M_y
 ightarrow m_p$ proton dissociates, contribution should be understood

1.12.2016

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

fraction seen in detec

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- \rightarrow rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Large Rapidity Gap (LRG)

require no activity beyond η_{max}

- C very good acceptance at low XIP

🙁 p-diss background about 20% 🎉

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Due to vacuum quantum number exchange

- \rightarrow leading particle at relatively small t
- → rapidity distributions of final state (VM, X) separated from leading particle by non-exponentially suppressed gaps – Large Rapidity Gap (LRG)

Both leading proton tagging or LRG detection used in H1 and ZEUS

Proton tagging method

H1: VFPS (2005-2007)

- FPS (1997-2007) ZEUS: LPS (1997-2000)
- © free of p-dissociation background
- \bigcirc x_{IP} and t measurements
- \odot access to high x_{IP} range (IP and IR)
- ☺ small acceptance, small statistics

Modelling of diffraction

QCD collinear factorisation theorem

Then DPDFs extracted from DIS data

Dipole models

Proton rest frame - dipoles

[C. Marquet PRD76 (2007) 094017]

$$d\sigma_{diff}^{\gamma^*p}/dt \propto \int dz dr^2 \Psi^* \sigma_{qq}^2(x,r^2,t) \Psi$$

 γ^* fluctuates into $q\overline{q}, q\overline{q}g$ states (color dipoles) of transverse size proportional to $1/J(Q^2+M_{qq}^2)$

No extra parameters needed for DDIS

DPDFs in DIS- H1 and ZEUS

DPDFs extracted from NLO DGLAP fit, $\mu^2 = 25 \text{ GeV}^2$, x = 0.01 using Regge factorisation H1 Fit B - z G(z) H1 Fit B - z Σ(z) DPDFs: H1 fit B, H1 fit Jets, ZEUS fit SJ ZEUS SJ - z G(z) × 1.2 ZEUS SJ - z $\Sigma(z) \times 1.2$ Gluon exchange dominates (~ 70-75% of the 30 H1 Fit Jets - z G(z) Pomeron momentum), main differencies in fits H1 Fit Jets - z Σ(z) **DPDFs used in NLO calculations to predict** 20 gluons diffractive production of charm and dijets e(k') Q² e(k) 10 quarks $Z_{\text{IP}} = \frac{\sum (E + p_z)_{jets}}{(E + p_z)_{hadrons}}$ • M₁₂ ZIPS ElP remnant 0.2 0.4 0.8 0.6 ×_{IP}∥IP $\mathsf{z=z_{IP}} = \frac{\frac{Q^2 + M_{12}^2}{Q^2 + M_{x}^2}}{Q^2 + M_{x}^2}$ p'

MPI workshop, San Cristobal de las Casas

1.12.2016

Diffractive dijet production in DIS

DIS	2-jets	diffraction
$4 < Q^2 < 100 \text{ GeV}^2$ 0.1 < y < 0.7	$p^*_{\mathrm{T},1} > 5.5 \; \mathrm{GeV}$ $p^*_{\mathrm{T},2} > 4.0 \; \mathrm{GeV}$ $-1 < \eta^{\mathrm{lab}}_{1,2} < 2$	$x_P < 0.03$ $ t < 1 \text{ GeV}^2$ $M_Y < 1.6 \text{ GeV}$

Most precise DDIS dijet measurement from HERA

- \rightarrow based on ~ 290 pb $^{\text{-1}}$ of HERA-2 H1 data
- → LRG selection used
- → proton dissociation contribution up to M_{y} < 1.6 GeV
- \rightarrow detector effects controlled very well by simulation
- \rightarrow data corrected with regularized unfolding (TUnfold)
- \rightarrow single and double-differential x-sections measured

Compared with theory

- → in NLO QCD (nlojet++)
- \rightarrow hadronization corrections from MC
- → using H1 2006 DPDF Fit B

Diffractive dijet production in DIS

 $\alpha_{s}(M_{z}) = 0.119 \pm 0.004 (exp) \pm 0.012 (DPDF, theo)$

Result is consistent within uncertanties with the world average

MPI workshop, San Cristobal de las Casas

Factorisation tests in diffractive production

! DPDFs are not portable to diffractive hadron-hadron (pp) processes !

→ order of magnitude overestimation of predicted $\overline{p}p$ dijet rates first observed by CDF → Factorization breaking $S^2 = \frac{\sigma (data)}{\sigma (data)}$

Absorptive effects occur

- \rightarrow change of event kinematics
- → rescattering or unitarity corrections
- → several approaches exist to calculate so called Survival probability <S²>
 - ... i.e. probability of diffractive event to retain the diffractive signature

Tested in diffractive dijet photoproduction at HERA due to γ 's partonic fluctuations (hadron-like object)

Factorisation tests in diffractive dijet photoproduction

History – factorisation tests in γp

Previous H1 and ZEUS (LRG) analyses

 \rightarrow H1: 2007 (S² ~ 0.5), 2010 (S² ~ 0.6)

→ ZEUS: 2010 (S² ~ 1)

Suppression is not dependent on x_v

Diffractive dijet photoproduction & DIS- measurement in Very Forward Proton Spectrometer

Independent cross-check of LRG measurements – without proton dissociation!

Diffractive dijet DIS & yp

Diffractive dijet photoproduction

The suppression seems to be not dependent on x_{γ} . It is in agreement with previous H1 and ZEUS observations!

Diffractive dijet photoproduction & DIS

Previous H1 measurement confirmed!

Diffractive D* production in DIS

- hard scale -> mass of D*
- sensitive to gluon content

Charm contribution to $F_2^D \sim 20\%$ - similar as for inclusive DIS

- → based on 280 pb⁻¹ HERA-2 data (previous H1 publ. at 50 pb⁻¹ H1 HERA 1)
- \rightarrow open charm tagged with D*

$$D^{*+} \rightarrow D^0 \pi^+_{slow} \rightarrow (K^- \pi^+) \pi^+_{slow} + C.C.$$

→ fits of $\Delta m = m(D^*_{cand}) - m(D^0_{cand})$ → large rapidity gap selection

 $\begin{array}{ll} 5 &< Q^2 < 100 \; GeV^2 & 0.02 \; < y < 0.65 \\ p_{_{t,D^*}} > 1.5 \; GeV & |\eta_{_{D^*}}| < 1.5 \; \ \dots \; in \; lab \\ x_{_{IP}} < 0.03 \end{array}$

1,12,2016

Diffractive D* production in DIS

NLO QCD prediction agree well within errors with measured cross sections

 \rightarrow new test of factorization

Final measurement might serve as an input to DPDF fits

Conclusions

- H1 and ZEUS measured inclusive diffractive cross sections using different methods of diffraction selection and determined Diffractive Parton Density Functions (DPDFs).
- Measured DPDFs were applied in NLO calculations to wide variety of observables for DIS and photoproduction
 - tests of QCD collinear factorisation.
 - In diffractive DIS QCD factorisation confirmed
 - In dijet photoproduction ZEUS results consistent with factorisation, H1 measured suppression factor S²~0.5 using both LRG and proton detection selection
 - In diffractive D* production within large uncertainties QCD factorisation confirmed for both DIS and photoproduction