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|Outline|

• Factorized cross section calculation

• Off-shell amplitudes

• KaTie: for parton-level event generation with kT -dependent initial states
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|Four jets with kT -factorization| Maciu la, Szczurek,
Kutak, Serino, AvH 2016
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• ∆S is the azimutal angle between the sum of the two
hardest jets and the sum of the two softest jets.

• This variable has no distribution at LO in collinear
factorization: pairs would have to be back-to-back.

• kT -factorization allows for the necessary momentum inbalance.

∆S
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|Why kT -factorization?|

• ∆S is an example of an observable whos distribution is not calculable at LO in collinear
factorization.

• this happens for any angular observable that separates the final-state momenta into 2
groups.

• 2→ 2 processes in particular often need higher order corrections.

• changing the kinematics seems to go beyond what one would expect from perturbative
corrections.

• kT -factorization provides already at LO a momentum inbalance to the final state.

• kT -dependent pdfs (TMDs,updfs) can provide resummation corrections.

Disadvantages

• few actual factorization theorems exist.

• required off-shell matrix elements more complicated to calculate.
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|Factorization for hadron scattering|

k2

k1

p2

p1

Y

• The parton level cross section dσ̂
(
π∗
a(k1)π

∗
b(k2) → Y

)
can

be calculated within perturbative QCD.

• The parton distribution functions fi,a and Fi,a must be mod-
elled and fit against data.

• Unphysical scale µ is a price to pay, but its dependence is
calculable within perturbative QCD via evolution equations.

General formula for cross section with π∗ ∈ {g∗, q∗, q̄∗}:

dσ
(
h1(p1)h2(p2) → Y

)
=

∑

a,b

∫
d4k1 P1,a(k1)

∫
d4k2 P2,b(k2)dσ̂

(
π∗
a(k1)π

∗
b(k2) → Y

)
Collinear factorization: Pi,a(k) =

∫ 1

0

dx

x
fi,a(x, µ) δ

4(k− xpi)

kT -factorization: Pi,a(k) =

∫
d2kT
π

∫ 1

0

dx

x
Fi,a(x, |kT |, µ) δ

4(k− xpi − kT)
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|Factorization for hadron scattering|

k2

k1

p2

p1

Y

σ̂ =

∫
dΦ(1, 2→ 3, 4, . . . , n)

∣∣M(1, 2, . . . , n)
∣∣2O(p3, p4, . . . , pn)

phase space includes summation over color and spin
squared amplitude calculated perturbatively

observable includes phase space cuts, or jet algorithm

General formula for cross section with π∗ ∈ {g∗, q∗, q̄∗}:

dσ
(
h1(p1)h2(p2) → Y

)
=

∑

a,b

∫
d4k1 P1,a(k1)

∫
d4k2 P2,b(k2)dσ̂

(
π∗
a(k1)π

∗
b(k2) → Y

)
Collinear factorization: Pi,a(k) =

∫ 1

0

dx

x
fi,a(x, µ) δ

4(k− xpi)

kT -factorization: Pi,a(k) =

∫
d2kT
π

∫ 1

0

dx

x
Fi,a(x, |kT |, µ) δ

4(k− xpi − kT)
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|Gauge invariance|
In order to be physically relevant, any scattering amplitude following the constructive
definition given before must satisfy the following

Freedom in choice of gluon propagator:





−i

k2

[
gµν − (1− ξ)

kµkν

k2

]
−i

k2

[
gµν −

kµnν + nµkν

k·n + (n2 + ξk2)
kµkν

(k·n)2
]

Ward identity:

µk
µ = 0µε

µ(k) →

• Only holds if all external particles are on-shell.

• kT -factorization requires off-shell initial-state momenta kµ = pµ + kµT .

• How to define amplitudes with off-shell intial-state momenta?
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|Amplitudes with off-shell gluons|
AvH, Kutak, Kotko 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ + αqµ + βkµT

pµA ′ = −(Λ−x)pµ−αqµ+(1−β)kµT

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

p2A = p2A ′ = 0 , pµA+p
µ
A ′ = xp

µ+kµT



9999

|Amplitudes with off-shell gluons|
AvH, Kutak, Kotko 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ + αqµ + βkµT

pµA ′ = −(Λ−x)pµ−αqµ+(1−β)kµT

Λ→ ∞
µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q

x
xxIn agreement with the effective action approach of xx
xxLipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005 xx
xxLipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013 xx
xxand the Wilson-line approach of xx
xxKotko 2014 xx
x
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|Tree-level amplitudes with off-shell recursion|

Off-shell currents, or Green functions with all external particles on-shell, satisfy the recursive

• Sums are over partitions of on-shell parti-
cles over the blobs, and over possible fla-
vors for virtual particles.

• Current with n = #externalparticles − 1
is completely on-shell and gives the ampli-
tude.

• Solution can be represented as a sum of
Feynman graphs,

• but recursion can also be used to construct
amplitude directly.

• ideal for efficient and automated numerical
evaluation of tree-level amplitudes

• used in Alpgen, Helac, O’mega,
Comix, ...

Dyson-Schwinger equations

Theories with four-point vertices:

n =
∑

i+j=n j

i

+
∑

i+j+k=n k

j

i

+
1

2
n +

1

2

∑

i+j=n j

i

+
1

6
n

Theories with more types of currents:

n =
∑

i+j=n

i

j

+ n

n =
∑

i+j=n

i

j

+ n

n =
∑

i+j=n

i

j

+ n
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|KATIE| https://bitbucket.org/hameren/katie

• parton level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary processes within the standard model (including effective Hg) with several
final-state particles.

• 0, 1, or 2 off-shell intial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids.

• a calculation is steered by a single input file.

• employs an optimization phase in which the pre-samplers for all channels are optimized.

• during the generation phase several event files can be created in parallel.

• can generate (naively factorized) MPI events.

• event files can be processed further by parton-shower program like CASCADE (talk by
Mirko Serino).
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pp→ 4j SPS
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pp→ 4j SPS
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pp→ 4j DPS



99917

pp→ 4j DPS
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|Conclusions|

• kT -factorization allows for the parton-level description of kinematical situations inac-
cessible with LO collinear factorization, eg. ∆S for four jets.

• Factorization prescriptions with explicit kT dependence in the pdfs ask for hard matrix
elements with off-shell initial-state partons.

• The necessary amplitudes can be defined in a manifestly gauge invariang manner that
allows for e.g. Dyson-Schwinger recursion, both for off-shell gluons and off-shell quarks.

• KaTie generates parton-level events with kT -dependent initial states, both for SPS and
DPS.
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|Backup|
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2
εµ −

κ∗

2
ε∗µ with





εµ =
〈p|γµ|q]
[pq]

, κ =
〈q|k/|p]
〈qp〉

ε∗µ =
〈q|γµ|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.
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|Off-shell one-loop amplitudes|

xpµ + k
µ
T

p
µ
A p

µ
A ′

=⇒

pµA = Λpµ + αqµ + βkµT , pµA ′ = −(Λ− x)pµ − αqµ + (1− β)kµT ,

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

.

With this choice, the momenta pA, pA ′ satisfy the relations

p2A = p2A ′ = 0 , pµA + pµA ′ = xp
µ + kµT

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→ ∞.

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
Taking this limit after loop integration will lead to singularities logΛ.
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|BCFW recursion| for on-shell amplitudes

Gives compact expression through recursion of on-shell amplitudes.

p2

pi

1

K̂(z)2

pµ
1 + zeµ pµ

n − zeµ

K̂µ(z) = pµ
1 + · · ·+ pµ

i + zeµ

= −pµ
i+1 − · · ·− pµ

n + zeµ

pi+1

pn−1

K̂(z)2 = 0 ⇔ z = −
(p1 + · · ·+ pi)2
2(p2 + · · ·+ pi)·e

A(1+, 2, . . . , n−1, n−) =

n−1∑

i=2

∑

h=+,−

A(1̂+, 2, . . . , i,−K̂h1,i)
1

K21,i
A(K̂−h

1,i , i+1, . . . , n−1, n̂
−)

eµ = 1
2
〈p1|γµ|pn]

A(1+, 2−, 3−) =
〈23〉3
〈31〉〈12〉 , A(1−, 2+, 3+) =

[32]3

[21][13]
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|BCFW recursion| for off-shell amplitudes
AvH 2014

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑

i=2

∑

h=+,−

Ai,h +

n−1∑

i=2

Bi + C + D ,

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

C =

1̂ n̂

n− 12
1

κ1
D =

1̂ n̂

n− 12
1

κ∗1

The hatted numbers label the shifted external gluons.
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|BCFW recursion| with (off-shell) quarks
AvH, Serino 2015

• on-shell case treated in Luo, Wen 2005

• any off-shell parton can be shifted: propagators of “external” off-shell partons give the
correct power of z in order to vanish at infinity

• different kinds of contributions in the recursion

gets contributions from and

• many of the MHV amplitudes come out as expected

• some more-than-MHV amplitudes do not vanish, but are sub-leading in kT

A(1+, 2+, . . . , n+, q̄∗, q−) =
−〈q̄q〉3

〈12〉〈23〉 · · · 〈nq̄〉〈q̄q〉〈q1〉

• off-shell quarks have helicity

A(1, 2, . . . , n, q̄∗(+), q∗(−)) 6= A(1, 2, . . . , n, q̄∗(−), q∗(+))


