Automated calculations for MPI

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

presented at the 8th International Workshop on MPI at the LHC Former Convent of San Agustin, San Cristóbal de las Casas, Chiapas, Mexico 1-12-2016

This work was supported by grant of National Science Center, Poland, No. 2015/17/B/ST2/01838.

- Factorized cross section calculation
- Off-shell amplitudes
- KaTie: for parton-level event generation with k_T -dependent initial states

Four jets with k_T-factorization

√s = 7 TeV 4 jets X CMS data 2nd jet: p_ > 50 GeV ijet: p_ > 20 GeV [rad⁻¹] SPS + DPS 1/σ dσ/ΔS SPS HEF DPS HEF 10⁻¹ 10⁻² 0.5 1.5 2 25 3 ΔS [rad]

- ΔS is the azimutal angle between the sum of the two hardest jets and the sum of the two softest jets.
- This variable has no distribution at LO in collinear factorization: pairs would have to be back-to-back.
- k_T -factorization allows for the necessary momentum inbalance.

Why k_{T} -factorization?

- ΔS is an example of an observable whos distribution is not calculable at LO in collinear factorization.
- this happens for any angular observable that separates the final-state momenta into 2 groups.
- $2 \rightarrow 2$ processes in particular often need higher order corrections.
- changing the kinematics seems to go beyond what one would expect from *perturbative* corrections.
- k_T -factorization provides already at LO a momentum inbalance to the final state.
- k_T -dependent pdfs (TMDs,updfs) can provide resummation corrections.

Disadvantages

- few actual factorization theorems exist.
- required off-shell matrix elements more complicated to calculate.

Factorization for hadron scattering

General formula for cross section with $\pi^* \in \{g^*,q^*,\bar{q}^*\}$:

 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} \mathbf{f}_{i,a}(\mathbf{x}, \mathbf{\mu}) \, \delta^4(k - x \, p_i)$

k_T-factorization: $\mathcal{P}_{i,a}(k) = \int \frac{d^2 \mathbf{k}_T}{\pi} \int_0^1 \frac{dx}{x} \mathcal{F}_{i,a}(x, |\mathbf{k}_T|, \mu) \,\delta^4(k - x \, p_i - k_T)$

- The parton level cross section $d\hat{\sigma}(\pi_a^*(k_1)\pi_b^*(k_2) \to Y)$ can be calculated within perturbative QCD.
- The parton distribution functions $f_{i,a}$ and $\mathcal{F}_{i,a}$ must be modelled and fit against data.
- Unphysical scale μ is a price to pay, but its dependence is calculable within perturbative QCD via *evolution equations*.

Factorization for hadron scattering

General formula for cross section with $\pi^* \in \{g^*, q^*, \bar{q}^*\}$:

 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} f_{i,a}(x,\mu) \,\delta^4(k-x\,p_i)$

 $\mathbf{k}_{\mathrm{T}}\text{-factorization:} \quad \mathcal{P}_{\mathrm{i},a}(\mathbf{k}) = \int \frac{\mathrm{d}^{2}\mathbf{k}_{\mathrm{T}}}{\pi} \int_{0}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{F}_{\mathrm{i},a}(x, |\mathbf{k}_{\mathrm{T}}|, \mu) \,\delta^{4}(\mathbf{k} - x \, \mathbf{p}_{\mathrm{i}} - \mathbf{k}_{\mathrm{T}})$

$$\hat{\sigma} = \int d\Phi(1, 2 \to 3, 4, \dots, n) \left| \mathcal{M}(1, 2, \dots, n) \right|^2 \mathcal{O}(p_3, p_4, \dots, p_n)$$

phase space includes summation over color and spin squared amplitude calculated perturbatively observable includes phase space cuts, or jet algorithm

Gauge invariance

In order to be physically relevant, any scattering amplitude following the constructive definition given before must satisfy the following

Freedom in choice of gluon propagator:

$$\begin{cases} -\frac{-i}{k^{2}} \left[g^{\mu\nu} - (1-\xi) \frac{k^{\mu}k^{\nu}}{k^{2}} \right] \\ -\frac{-i}{k^{2}} \left[g^{\mu\nu} - \frac{k^{\mu}n^{\nu} + n^{\mu}k^{\nu}}{k \cdot n} + (n^{2} + \xi k^{2}) \frac{k^{\mu}k^{\nu}}{(k \cdot n)^{2}} \right] \end{cases}$$

Ward identity:

$$\log_{\mu} \epsilon^{\mu}(k) \rightarrow \log_{\mu} k^{\mu} = 0$$

- Only holds if all external particles are on-shell.
- k_T -factorization requires off-shell initial-state momenta $k^{\mu} = p^{\mu} + k_T^{\mu}$.
- How to define amplitudes with off-shell intial-state momenta?

AvH, Kutak, Kotko 2013:

Embed the process in an on-shell process with auxiliary partons

 $\begin{aligned} p^{\mu}_{A} &= \Lambda p^{\mu} + \alpha q^{\mu} + \beta k^{\mu}_{T} \\ p^{\mu}_{A'} &= -(\Lambda - x) p^{\mu} - \alpha q^{\mu} + (1 - \beta) k^{\mu}_{T} \end{aligned} \qquad \alpha &= \frac{-\beta^{2} k^{2}_{T}}{\Lambda (p+q)^{2}} \quad, \quad \beta = \frac{1}{1 + \sqrt{1 - x/\Lambda}} \end{aligned}$

 $p_A^2 = p_{A'}^2 = 0 \ , \ p_A^\mu + p_{A'}^\mu = x p^\mu + k_T^\mu$

AvH, Kutak, Kotko 2013:

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Tree-level amplitudes with off-shell recursion

Off-shell currents, or Green functions with all external particles on-shell, satisfy the recursive

Dyson-Schwinger equations

Theories with four-point vertices:

Theories with more types of currents:

- Sums are over partitions of on-shell particles over the blobs, and over possible flavors for virtual particles.
- Current with n = #externalparticles -1 is completely on-shell and gives the amplitude.
- Solution can be represented as a sum of Feynman graphs,
- but recursion can also be used to construct amplitude directly.
- ideal for efficient and automated numerical evaluation of tree-level amplitudes
- used in Alpgen, Helac, O'mega, Comix, ...

https://bitbucket.org/hameren/katie

- \bullet parton level event generator, like $\operatorname{Alpgen}, \operatorname{Helac}, \operatorname{Mad}Graph,$ etc.
- arbitrary processes within the standard model (including effective Hg) with several final-state particles.
- 0, 1, or 2 off-shell intial states.

KATIE

- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids.
- a calculation is steered by a single input file.
- employs an optimization phase in which the pre-samplers for all channels are optimized.
- during the generation phase several event files can be created in parallel.
- can generate (naively factorized) MPI events.
- event files can be processed further by parton-shower program like CASCADE (talk by Mirko Serino).

```
Ngroup = 1
Nfinst = 4
                            factor = 1
                                                            pNonQCD = 0 0 0
process = g g -> g g g g
                                                groups = 1
process = g g -> g g q q~ factor = Nf
                                                            pNonQCD = 0 0 0
                                                groups = 1
                           factor = Nf
                                                            pNonQCD = 0 0 0
process = g g -> q q~ q q~
                                                groups = 1
              -> q q~ r r~ factor = Nf*(Nf-1)
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = g g
                            factor = 1
process = g q -> g g
                      gq
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = g q -> g q
                      q q~ factor = 1
                                                            pNonQCD = 0 0 0
                                                groups = 1
process = g q -> g q r r~ factor = Nf-1
                                                groups = 1
                                                            pNonQCD = 0 0 0
                      gq
                            factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q g -> g g
process = q g -> g q q q~ factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
                            factor = Nf-1
process = q g -> g q r r~
                                                groups = 1
                                                            pNonQCD = 0 0 0
                            factor = 1
                                                            pNonQCD = 0 0 0
process = q q^{->} g g
                      gg
                                                groups = 1
process = q q^{->} g g
                     q q~ factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q~ -> g g r r~
                           factor = Nf-1
                                                            pNonQCD = 0 0 0
                                                groups = 1
process = q q~ -> q q~ q q~ factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q~ -> q q~ r r~ factor = Nf-1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q~ -> r r~ r r~ factor = Nf-1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q -> g g q q
                            factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q -> q q q q q factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = q q -> q q r r~ factor = Nf-1
                                                groups = 1
                                                            pNonQCD = 0 0 0
process = qr -> gg qr
                            factor = 1
                                                            pNonQCD = 0 0 0
                                                groups = 1
process = q r -> q r q q~ factor = 1
                                                groups = 1
                                                            pNonQCD = 0 0 0
lhaSet = MSTW2008nlo68cl
offshell = 1 1
tmdTableDir = /home/user0/kTfac/tables/krzysztof02/
tmdpdf = g
           KMR_gluon.dat
tmdpdf = u
           KMR u.dat
tmdpdf = u~ KMR_ubar.dat
tmdpdf = d KMR_d.dat
tmdpdf = d~ KMR dbar.dat
           KMR s.dat
tmdpdf = s
tmdpdf = s~ KMR_sbar.dat
                                             pp \rightarrow 4j SPS
           KMR_c.dat
tmdpdf = c
tmdpdf = c~ KMR_cbar.dat
tmdpdf = b KMR b.dat
tmdpdf = b~ KMR_bbar.dat
```

```
Nflavors = 5
helicity = sampling
Noptim = 100,000
Ecm = 7000
Esoft = 20
cut = {deltaR|1,2|} > 0.5
cut = {deltaR|1,3|} > 0.5
cut = {deltaR|1,4|} > 0.5
cut = {deltaR|2,3|} > 0.5
cut = {deltaR|2,4|} > 0.5
cut = {deltaR|3,4|} > 0.5
cut = {pT|1|1,2,3,4} > 50
cut = {pT|2|1,2,3,4} > 50
cut = \{pT|3|1,2,3,4\} > 20
cut = \{pT|4|1,2,3,4\} > 20
cut = {rapidity|1|} > -4.7
cut = {rapidity|2|} > -4.7
cut = {rapidity|3|} > -4.7
cut = {rapidity|4|} > -4.7
cut = {rapidity|1|} < 4.7
cut = {rapidity|2|} < 4.7
cut = {rapidity|3|} < 4.7
cut = {rapidity|4|} < 4.7
scale = ({pT|1|}+{pT|2|}+{pT|3|}+{pT|4|})/2
mass = Z 91.1882 2.4952
mass = W 80.419 2.21
                  0.00429
mass = H 125.0
mass = t 173.5
switch = withOCD
                   Yes
switch = withOED
                   No
switch = withWeak
                  No
switch = withHiggs No
switch = withHG
                   No
coupling = Gfermi 1.16639d-5
```

 $pp \rightarrow 4j \text{ SPS}$

```
Ngroup = 2
Nfinst = 22
process = g g -> g g factor = 1
                                     groups = 1.2 pNonQCD = 0.00
process = g g -> q q~ factor = Nf
                                     groups = 1.2 pNonQCD = 0.00
                                     groups = 1.2 pNonQCD = 0.0
process = g q -> q g factor = 1
process = q g -> q g factor = 1
                                     groups = 1.2 pNonQCD = 0.00
process = q q -> q q factor = 1
                                     groups = 1.2 pNonQCD = 0.00
process = q r -> q r factor = 1
                                     groups = 1 2 pNonQCD = 0 0 0
process = q q~ -> g g factor = 1
                                     groups = 1.2 pNonQCD = 0.00
process = q q~ -> q q~ factor = 1
                                     groups = 1.2 pNonQCD = 0.00
process = q q \sim -> r r \sim factor = Nf-1 groups = 1 2 pNonQCD = 0 0 0
lhaSet = MSTW2008nlo68cl
offshell = 1 1 # eg. g* g* -> ...
tmdTableDir = /home/user0/kTfac/tables/krzysztof02/
tmdpdf = g KMR gluon.dat
tmdpdf = u KMR u.dat
tmdpdf = u~ KMR ubar.dat
tmdpdf = d KMR_d.dat
tmdpdf = d~ KMR dbar.dat
tmdpdf = s KMR_s.dat
tmdpdf = s~ KMR sbar.dat
tmdpdf = c KMR c.dat
tmdpdf = c~ KMR_cbar.dat
tmdpdf = b KMR b.dat
tmdpdf = b~ KMR_bbar.dat
sigma_eff = 15d6
Nflavors = 5
helicity = sum
Noptim = 100,000
Ecm = 7000
                                        pp \rightarrow 4j DPS
Esoft = 10
```

```
cut = {deltaR|1,2|} > 0.4
cut = {deltaR | 1,3 | } > 0.4
cut = {deltaR|1,4|} > 0.4
cut = {deltaR|2,3|} > 0.4
cut = \{deltaR|2,4|\} > 0.4
cut = {deltaR|3,4|} > 0.4
cut = \{pT|1|1,2,3,4\} > 40
cut = {pT|2|1,2,3,4} > 30
cut = {pT|3|1,2,3,4} > 20
cut = \{pT|4|1,2,3,4\} > 10
cut = {rapidity|1|} > -2.1
cut = {rapidity|2|} > -2.1
cut = {rapidity|3|} > -2.1
cut = {rapidity|4|} > -2.1
cut = {rapidity|1|} < 2.1
cut = {rapidity|2|} < 2.1
cut = {rapidity|3|} < 2.1
cut = {rapidity|4|} < 2.1
scale = entry 1 ({pT|1|}+{pT|2|})/2
scale = entry 2 ({pT|3|}+{pT|4|})/2
cut = group 1 {deltaR|1,2|} > 0.4
cut = group 1 {pT|1|} > 10
cut = group 1 {pT|2|} > 10
cut = group 1 {rapidity|1|} > -2.1
cut = group 1 {rapidity|2|} > -2.1
cut = group 1 {rapidity |1|} < 2.1
cut = group 1 {rapidity |2|} < 2.1
scale = group 1 ({pT|1|}+{pT|2|})/2
cut = group 2 {deltaR|1,2|} > 0.4
cut = group 2 {pT|1|} > 10
cut = group 2 {pT|2|} > 10
cut = group 2 {rapidity|1|} > -2.1
cut = group 2 {rapidity|2|} > -2.1
cut = group 2 {rapidity|1|} < 2.1</pre>
cut = group 2 {rapidity|2|} < 2.1</pre>
scale = group 2 ({pT|1|}+{pT|2|})/2
```

 $pp \rightarrow 4j DPS$

```
mass = Z
          91.1882
                    2.4952
           80,419
                    2.21
mass = W
mass = H 125.0
                    0.00429
mass = t 173.5
switch = withQCD
                   Yes
switch = withQED
                   No
switch = withWeak
                   No
switch = withHiggs No
switch = withHG
                   No
coupling = Gfermi 1.16639d-5
```

- k_T -factorization allows for the parton-level description of kinematical situations inaccessible with LO collinear factorization, eg. ΔS for four jets.
- Factorization prescriptions with explicit k_T dependence in the pdfs ask for hard matrix elements with off-shell initial-state partons.
- The necessary amplitudes can be defined in a manifestly gauge invariang manner that allows for *e.g.* Dyson-Schwinger recursion, both for off-shell gluons and off-shell quarks.
- KaTie generates parton-level events with $k_{\rm T}\mbox{-dependent}$ initial states, both for SPS and DPS.

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n

n-parton amplitude is a function of n momenta $k_1, k_2, ..., k_n$ and n *directions* $p_1, p_2, ..., p_n$, satisfying the conditions

$k_1^\mu+k_2^\mu+\dots+k_n^\mu=0$	momentum conservatior
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$p_1 \cdot k_1 = p_2 \cdot k_2 = \dots = p_n \cdot k_n = 0$	eikonal condition

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^\mu+k_2^\mu+\dots+k_n^\mu=0$	momentum conservation
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$\mathbf{p}_1 \cdot \mathbf{k}_1 = \mathbf{p}_2 \cdot \mathbf{k}_2 = \cdots = \mathbf{p}_n \cdot \mathbf{k}_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q) = k^{\mu} - x(q)p^{\mu}$$
 with $x(q) \equiv rac{q \cdot k}{q \cdot p}$

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^{\mu} + k_2^{\mu} + \dots + k_n^{\mu} = 0$	momentum conservation
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$\mathbf{p}_1 \cdot \mathbf{k}_1 = \mathbf{p}_2 \cdot \mathbf{k}_2 = \cdots = \mathbf{p}_n \cdot \mathbf{k}_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q)=k^{\mu}-x(q)p^{\mu} \quad \text{with} \quad x(q)\equiv \frac{q\cdot k}{q\cdot p}$$

Construct k_T^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$k_{T}^{\mu}(q) = -\frac{\kappa}{2} \, \varepsilon^{\mu} - \frac{\kappa^{*}}{2} \, \varepsilon^{*\mu} \quad \text{with} \quad \begin{cases} \varepsilon^{\mu} = \frac{\langle p | \gamma^{\mu} | q]}{[pq]} &, \quad \kappa = \frac{\langle q | \mathcal{K} | p]}{\langle qp \rangle} \\ \varepsilon^{*\mu} = \frac{\langle q | \gamma^{\mu} | p]}{\langle qp \rangle} &, \quad \kappa^{*} = \frac{\langle p | \mathcal{K} | q]}{[pq]} \end{cases}$$

 $k^2=-\kappa\kappa^*$ is independent of $q^\mu,$ but also individually κ and κ^* are independent of $q^\mu.$

Off-shell one-loop amplitudes

$$xp^{\mu} + k_{T}^{\mu} \operatorname{cocc} \qquad \Longrightarrow \qquad p_{A'}^{\mu} \cdots p_{A''}^{\mu}$$

 $p^\mu_A = \Lambda p^\mu + \alpha q^\mu + \beta k^\mu_T \quad , \quad p^\mu_{A'} = -(\Lambda - x)p^\mu - \alpha q^\mu + (1-\beta)k^\mu_T \; ,$

where p,q are light-like with $p \cdot q > 0$, where $p \cdot k_T = q \cdot k_T = 0$, and where

$$\alpha = \frac{-\beta^2 k_T^2}{\Lambda(p+q)^2} \quad , \quad \beta = \frac{1}{1+\sqrt{1-x/\Lambda}}$$

With this choice, the momenta $p_A, p_{A'}$ satisfy the relations

$$p_A^2 = p_{A'}^2 = 0 \quad , \quad p_A^\mu + p_{A'}^\mu = x p^\mu + k_T^\mu$$

for any value of the parameter Λ . Auxiliary quark propagators become eikonal for $\Lambda \to \infty$.

$$i \frac{\not{p}_{A} + K}{(p_{A} + K)^{2}} = \frac{i \not{p}}{2p \cdot K} + O(\Lambda^{-1})$$

Taking this limit after loop integration will lead to singularities $\log \Lambda$.

BCFW recursion for on-shell amplitudes

Gives compact expression through recursion of on-shell amplitudes.

$$\hat{\zeta}(z)^2 = 0 \quad \Leftrightarrow \quad z = -\frac{(p_1 + \dots + p_i)^2}{2(p_2 + \dots + p_i) \cdot e}$$

$$\mathcal{A}(1^+, 2, \dots, n-1, n^-) = \sum_{i=2}^{n-1} \sum_{h=+,-} \mathcal{A}(\hat{1}^+, 2, \dots, i, -\hat{K}_{1,i}^h) \frac{1}{K_{1,i}^2} \mathcal{A}(\hat{K}_{1,i}^{-h}, i+1, \dots, n-1, \hat{n}^-)$$

$$\mathcal{A}(1^+, 2^-, 3^-) = \frac{\langle 23 \rangle^3}{\langle 31 \rangle \langle 12 \rangle} \quad , \quad \mathcal{A}(1^-, 2^+, 3^+) = \frac{[32]^3}{[21][13]}$$

BCFW recursion for off-shell amplitudes

The BCFW recursion formula becomes

The hatted numbers label the shifted external gluons.

AvH 2014

BCFW recursion with (off-shell) quarks

- on-shell case treated in Luo, Wen 2005
- any off-shell parton can be shifted: propagators of "external" off-shell partons give the correct power of z in order to vanish at infinity
- different kinds of contributions in the recursion

- many of the MHV amplitudes come out as expected
- $\bullet\,$ some more-than-MHV amplitudes do not vanish, but are sub-leading in k_T

$$\mathcal{A}(1^+,2^+,\ldots,n^+,\bar{q}^*,q^-) = \frac{-\langle \bar{q}q \rangle^3}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n\bar{q} \rangle \langle \bar{q}q \rangle \langle q1 \rangle}$$

• off-shell quarks have helicity

 $\mathcal{A}(1, 2, \dots, n, \bar{q}^{*(+)}, q^{*(-)}) \neq \mathcal{A}(1, 2, \dots, n, \bar{q}^{*(-)}, q^{*(+)})$