Prospects and Results from the AFP Detector in ATLAS

Grzegorz Gach on behalf of the ATLAS Collaboration

AGH University of Science and Technology

1 December, 2016

Multiple Partonic Interactions at the LHC 2016

ATLAS Forward Detectors

ATLAS Forward Proton

- detectors dedicated for diffractive processes measurements
- four stations two on each side
- detectors mounted in horizontal roman pots
- 3D pixels and time-of-flight detectors
- acceptance in $\xi = (E E')/E \approx (0.02, 0.12)$

Possible Measurements

- oproton kinematics
- 2 rapidity gaps
- **o** gap survival probability
- energy flow
- event shapes
- 6 jets
- jet-gap-jet
- iet-photon
- Pomeron structure

- heavy quarks
- O Drell-Yan, W
- exclusive jets
- exclusive lepton production
- photon-photon scattering
- $\mathbf{0}$ WW production
- \bigcirc ZZ production
- ¹⁰ resonant production

AFP Installation

AFP 0+2 - 2016

AFP 2+2 - 2017

AFP 0+2 Installation

- ✓ installation of two stations on one side in the tunnel
- \checkmark installation of tracking detectors in the stations
- $\checkmark\,$ LHC qualification
- $\checkmark\,$ integration with ATLAS DCS
- $\checkmark\,$ integration with ATLAS DAQ
- $\checkmark\,$ integration with ATLAS triggers
- $\checkmark\,$ data acquisition in special runs

AFP 0+2

- 3(4) layers of pixel detectors in each station
- 336×80 pixels of $50 \times 250 \,\mu\text{m}^2$
- pixel modules are similar to the ones used in ATLAS IBL with proven radiation hardness
- detectors are tilted by 14° with respect to vertical direction
- data collected in special low- μ runs with $\mathcal{L} \approx 500 \, \mathrm{nb}^{-1}$

AFP 0+2 Performance

- in almost 50% events 2 hits are observed in each plane
- very good correlation of hits between two planes (first and second)

AFP 0+2 Performance

- hits in AFP near (205 m) station at $5\sigma + 400 \,\mu\text{m}$ from the beam centre
- visible pattern of diffractive protons

AFP 0+2 Physics Single Diffractive Dissociation

- relatively high cross section
- special runs with pile-up free environment provide clean events
- single proton detectable in AFP
- AFP provides access to so far non-measurable quantities like $\xi = (E E')/E$ or $t = (\mathbf{P} \mathbf{P}')^2$

AFP 0+2 Physics — Inclusive Single Diffraction

- $\sigma_{SD + DD}$ measured together with inelastic cross-section at 7 TeV and 13 TeV using MBTS signal on one side
- combination of ALFA and ATLAS $\sigma_{\text{inelastic}}$ at 7 TeV gives σ_{SD} for $\xi < 5.1 \times 10^{-6}$

AFP 0+2 Physics — Inclusive Single Diffraction

Eur. Phys. J. C72 (2012) 1926 Eur. Phys. J. C72 (2012) 1926

- ATLAS dedicated measurement done only at $\sqrt{s}=7\,{\rm TeV}$
- possible large contribution of double diffraction background
- no measurement of differential cross sections $d\sigma/d\xi$ or $d\sigma/dt$
- improvement and extension of current measurements by tagging protons in 13 TeV

Grzegorz Gach (AGH UST)

AFP 0+2 Physics — Single Diffractive Jets

- probing Pomeron universality between *ep* and *pp* colliders
- measurement of gap survival probability
- Monte Carlo tuning

- $\checkmark\,$ despite challenging schedule the installation was successful
- \checkmark very good detector performance
- $\checkmark\,$ collected more data than initially planned
- $\checkmark\,$ good data for soft diffraction analysis
- \checkmark very good data for detector performance and background studies

AFP 2+2 Installation

- installation of two missing stations on the other side in the tunnel
- installation of tracking detectors
- installation of timing detectors on both sides
- LHC qualification
- integration of timing detectors triggers with ATLAS
- data acquisition in special runs
- data acquisition in standard runs

AFP 2+2 Time-of-Flight Detectors

- time resolution 10 ps or better
- $\bullet\,$ efficiency not smaller than $90\,\%$
- fast enough to provide trigger signal
- pile-up background reduction
- useful but not critical in special low- μ run
- necessary in standard runs with high pile-up

AFP 2+2 Physics — Single Diffractive Dissociation

- only in special low- μ runs
- clean pile-up free environment
- doubled number of events with respect to AFP 0+2

AFP 2+2 Physics — Central Diffraction

- special as well as standard runs give access to processes with medium and relatively small cross-sections
- double proton tag with time measurements allows direct observation of central diffraction with suppressed backgrounds (including pile-up)
- direct access to proton kinematics

AFP 2+2 Physics — Central Diffractive Jets

Phys.Rev. D88 (2013) no.7, 074029

Phys.Rev. D88 (2013) no.7, 074029

- probing gluon structure of Pomeron
- sensitive to gap survival probability
- \bullet testing Pomeron universality between $ep{-}pp$ colliders

AFP 2+2 Physics — Central Diffractive γ -jet

- probing quark structure of Pomeron
- testing Pomeron universality between *ep-pp* colliders
- interesting variables p_T and $M = \sqrt{s\xi_1\xi_2}$

AFP 2+2 Physics — Exclusive Dijets

- calculations can be done using QCD without Pomeron
- no Pomeron remnants
- sensitive to unintegrated gluon PDF
- sensitive to rescattering corrections
- analysis inspired by Khoze, Martin, Ryskin publications

AFP 2+2 Physics — γ - γ Processes

Physics Letters B 749 (2015) 242-261

- improvement and extension of existing measurements
- exclusive lepton production with tagged protons
- possible new physics with anomalous quartic couplings (W and Z production)
- \bullet very good background rejection for $\gamma\gamma$ production

Summary

- $\bullet\,$ very successful first stage of AFP installation AFP 0+2
- data collected in 2016 are interesting not only from detector performance point of view but also physics
- $\bullet\,$ next year final installation stage AFP 2+2 will be completed
- reach physics program for special low- μ focused mainly on soft diffraction
- timing detectors open access to measuring protons in high pile-up conditions and allow measuring processes with small cross sections