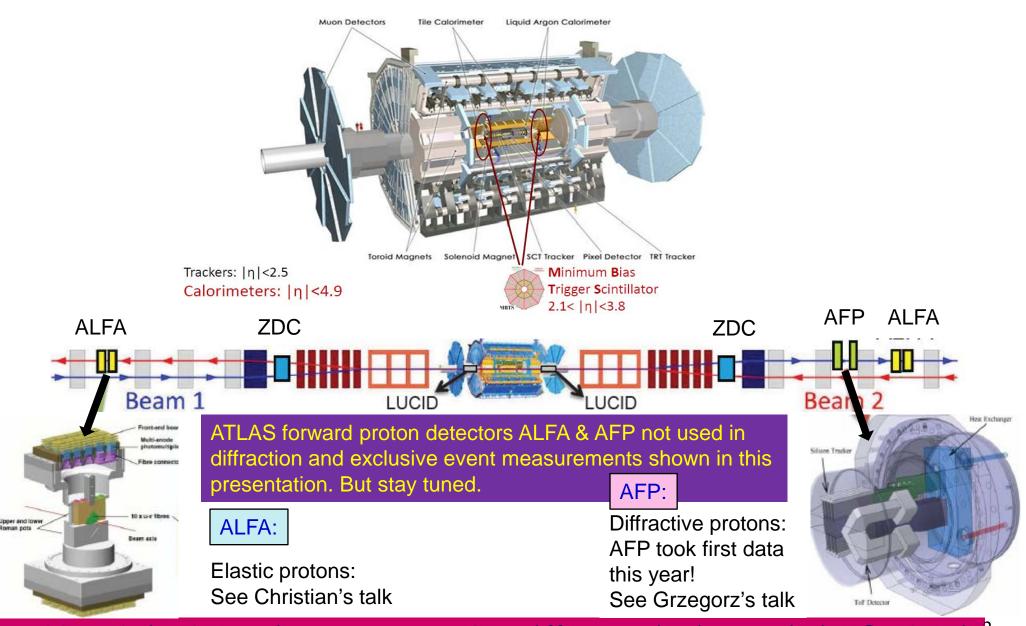

ATLAS results on diffraction and exclusive production

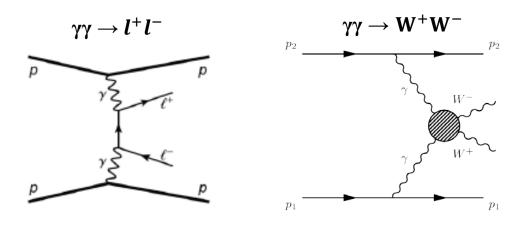

Marek Taševský Institute of Physics, Academy of Sciences, Prague

On behalf of the ATLAS collaboration

MPI@LHC 2016, San Cristobal de las Casas, Mexico - Nov 28 - Dec 02 2016

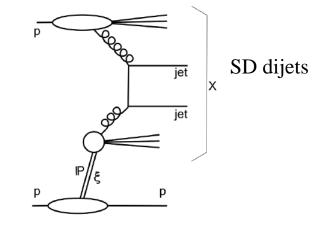
Diffractive dijets
 Exclusive l⁺l⁻
 Exclusive W⁺W⁻

ATLAS detector and its forward subdetectors


Marek Tasevsky (AS CR, Prague)

Introduction

Intact proton (or large rapidity gaps) in the final state = colorless exchange


Photon-induced processes: calculated via QED

- QED Diffraction: SD, DD
- ♦ QED exclusive production (l^+l^-, W^+W^-) :
- Underlying process $\gamma\gamma \rightarrow X$ can be calculated with acc. ~2% (Based on Equivalent Photon Approach, EPA)
- Proton absorptive corrections can reach up to 20%

Parton-induced processes: calculated via QCD

- QCD diffraction: SD, DD, DPE
 (Single Dissociation, Double Dissociation, Double Democrap Evolution)
- Double Pomeron Exchange)
- At hadron colliders: need to consider
- process-dependent soft survival probabilities
- QCD exclusive production not discussed here

□ The three presented ATLAS analyses have similar final states: large rapidity gaps

In the absence of forward proton detectors, 2 approaches to suppress backgrounds
 1) Large rapidity gaps: concentrate on low pile-up & measure large x- section processes
 2) No tracks and vertices around lepton vertex: large pile-up & low x-section processes
 Marek Tasevsky (AS CR, Prague)

Motivation

- Understand better diffraction and exclusive processes since both are often backgrounds to many LHC analyses.
- Both measured at HERA and Tevatron but cross sections are still known with a limited precision at LHC. Especially QCD (Pomeron-induced) diffraction and QCD exclusive processes need urgently an input.
- These measurements may be used in various MC tunes

 1) Diffractive dijets: - Provide cross sections and compare with existing models at 7 TeV - Estimate of soft survival probability
 (L = 6.8 nb⁻¹)

2) Exclusive leptons: - Standard candle (simple final state)

PLB 749 (2015) 242

at 7 TeV - Luminosity calibration at LHC ($\mathcal{L} = 4.6 \text{ fb}^{-1}$) - Alignment/Calibration of forward proton detectors (AFP, CT-PPS)

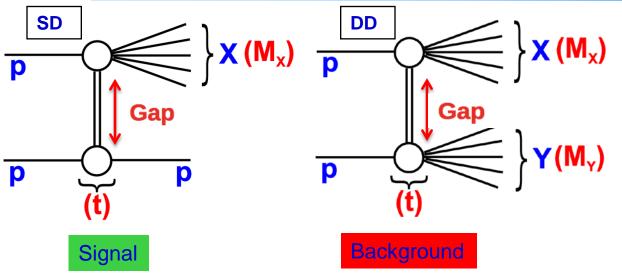
3) Exclusive WW→leptons: - Can profit from measurement of exclusive leptons
 PRD 94 (2016) 032011
 at 8 TeV - Estimate of anomalous quartic gage coupling (aQGC) γγWW
 Exclusive (QCD) Higgs →WW→leptons: - Collecting first exclusive Higgs candidates

 at 8 TeV
 (£ =20.2 fb⁻¹)
 - Least background but requires most statistics
 - Least background but requires most statistics
 - Least background but requires most statistics

Marek Tasevsky (AS CR, Prague)

Processes involved

Analysis	Final state \ Exchange	SD	DD	DPE	Exclusive	ND / inclusive
Diffr. dijets	IP- exchange	р јј Х	X jj Y	X' jj Y'	jj	jj X
Exclusive l^+l^-	γ-exchange	р <i>l⁺l⁻</i> Х	X <i>l</i> ⁺ <i>l</i> [−] Y	X' <i>l</i> + <i>l</i> - Y'	l+l-	<i>l</i> + <i>l</i> − ×
Exclusive W ⁺ W ⁻	γ-exchange	р W ⁺ W ⁻ Х	X W ⁺ W ⁻ Y	X' W ⁺ W ⁻ Y'	W ⁺ W ⁻	W ⁺ W ⁻ X


Signal Background

Backgrounds from γ (IP)-exchange to IP (γ)-exchange were found to be negligible.

Marek Tasevsky (AS CR, Prague)

ATLAS diffraction and exclusive results (MPI@LHC 2016)⁵

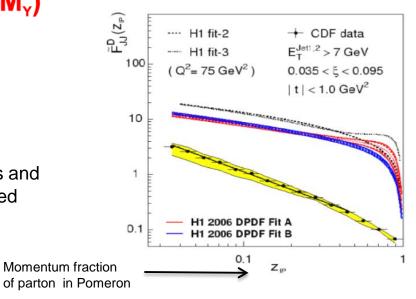
Diffractive dijets: Motivation

□ Key diffractive characteristics: rapidity gap $\Delta \eta^{F}$

- Exchange of <u>color singlet</u> (Pomeron) \rightarrow only remnants of Pomerons and dissociated protons, soft QCD radiation in large areas of η suppressed

- However: gaps observed also in **non-diffractive** events (explained by fluctuations in hadronization process)

Background


Kinematic variables

- invariant mass of the dissociated system $M_X(M_Y)$
- <u>fractional momentum loss</u> ξ of the scattered proton:

 $\xi = (p_Z^{\ln} - p_Z^{Out}) / p_Z^{\ln} \quad (\xi_X = M_X^2 / s)$

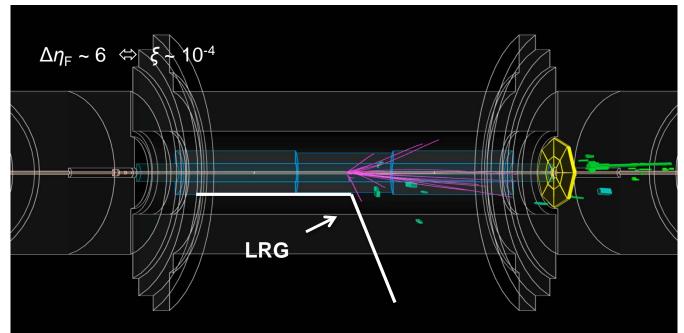
Gap survival probability (S²):

➢ Introduced to explain a big disagreement between CDF measurement and theory predictions based on measured HERA diffractive PDFs (factor of 10).

Discrepancy usually explained by rescattering of dissociated system with intact protons

What S^2 is in diffractive dijets at the LHC?

Marek Tasevsky (AS CR, Prague)


Rapidity gaps in ATLAS detector

- Large Rapidity Gap (LRG): Δη ~ log ξ_X → small ξ_X (M_X) ~ big gap Region in η devoid of hadronic activity due to the exchange of colorless object (Pomeron)
- > Detector-level LRG definition : $\Delta \eta^{F}$

Largest region in η (starting at the edge of the detector $\eta = \pm 4.8$) absent of clusters and tracks

> Non-pileup environment optimal since multiple soft *pp* interactions could fill the gap

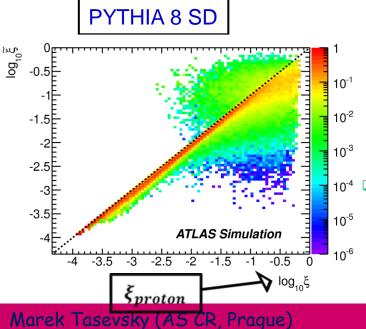
Events from early runs of 2010 (<*Nr* of pile-up interactions / bunch crossing>, < μ > ~ 0.044 – 0.144) used in the analysis

Marek Tasevsky (AS CR, Prague)

Event selection

Basic cuts & kinematic cuts

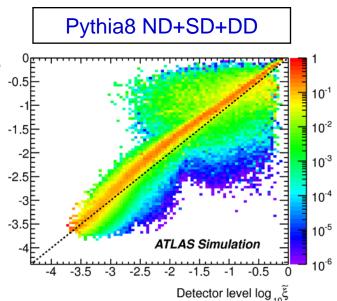
- Good primary vertex (n_{tracks}>4)
- Jets: $p_T^{\text{jet 1}} > 20 \text{ GeV}$, $p_T^{\text{jet 2}} > 20 \text{ GeV}$, $|\eta^{\text{jets}}| < 4.4$, anti- $k_T R = 0.6$ and 0.4

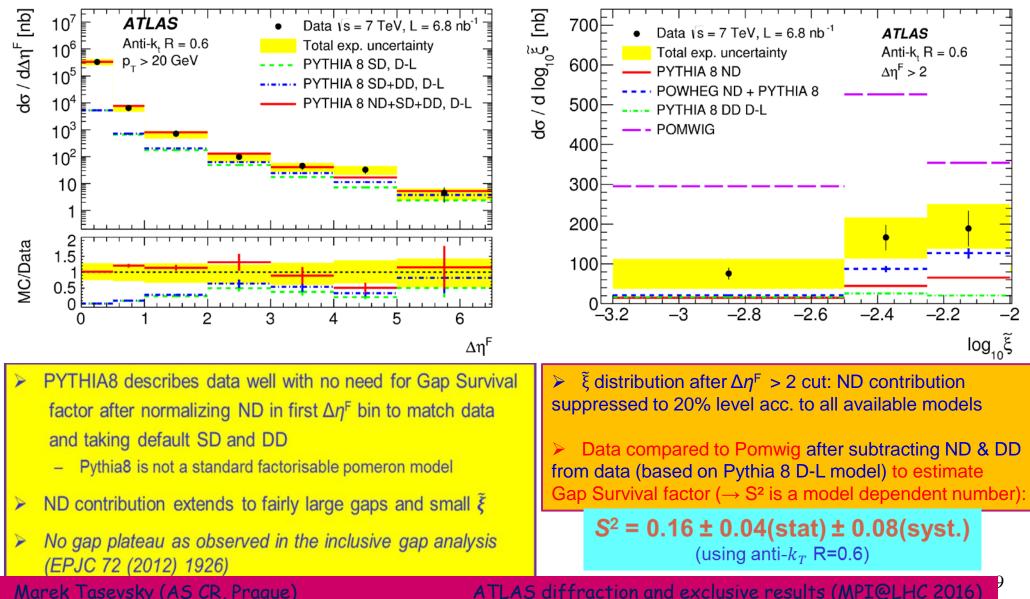

• Pile-up suppression cut, focus on 2010 data with low pile-up [$\mathcal{L} \sim 6.8 \text{ nb}^{-1}$]

no PU vertices (having n_{tracks} >1): removes ~5% of events (correction factors applied)

• Forward gap definition ($\Delta \eta_{\rm F}$)

- η -region devoid of activity (starting at either η =-4.8 or η =+4.8)
 - detector-level definition: tracks with p_T^{track} > 200 MeV
 - Clusters with cell significance $E_{cell}/\sigma_{noise} > S_{thr}(\eta)$ (~5.5)
 - particle-level definition:

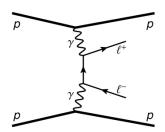

$p_{ch (n)}$ particle > 500 (200) MeV OR p_{T} > 200 MeV

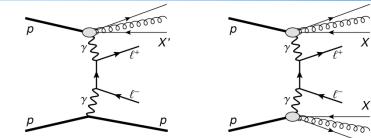

Fractional momentum loss $\xi_{proton} = (3.5 \text{TeV} - p_Z(\text{proton}))/3.5 \text{TeV}$ ξ estimator closer to exper. observability: $\tilde{\xi} = \sum p_T e^{\pm y}/3.5 \text{TeV}$ Performs well for $\xi < 0.01$

$\Box \tilde{\xi}$ definition

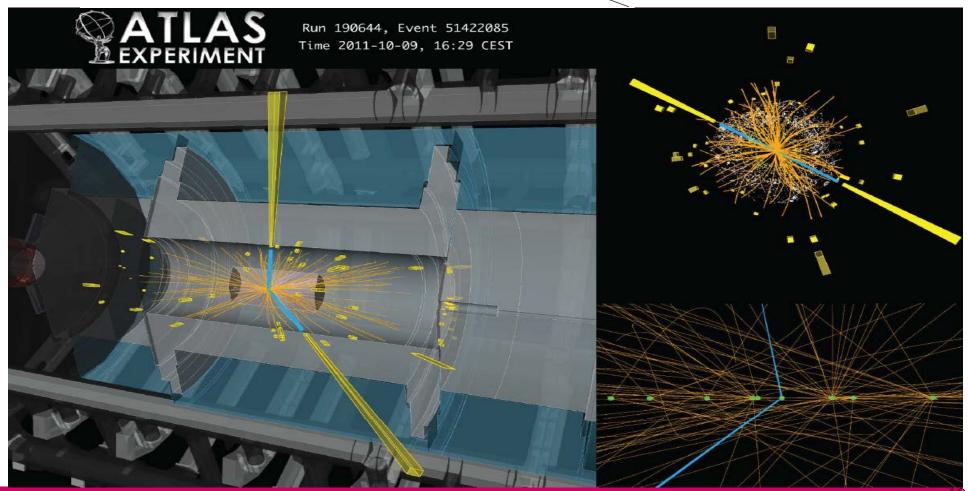
- strong particle-reco level correlation with limited resolution
- non-diagonality -> limited detector sensitivity to low energy particles

Corrected data compared to various models

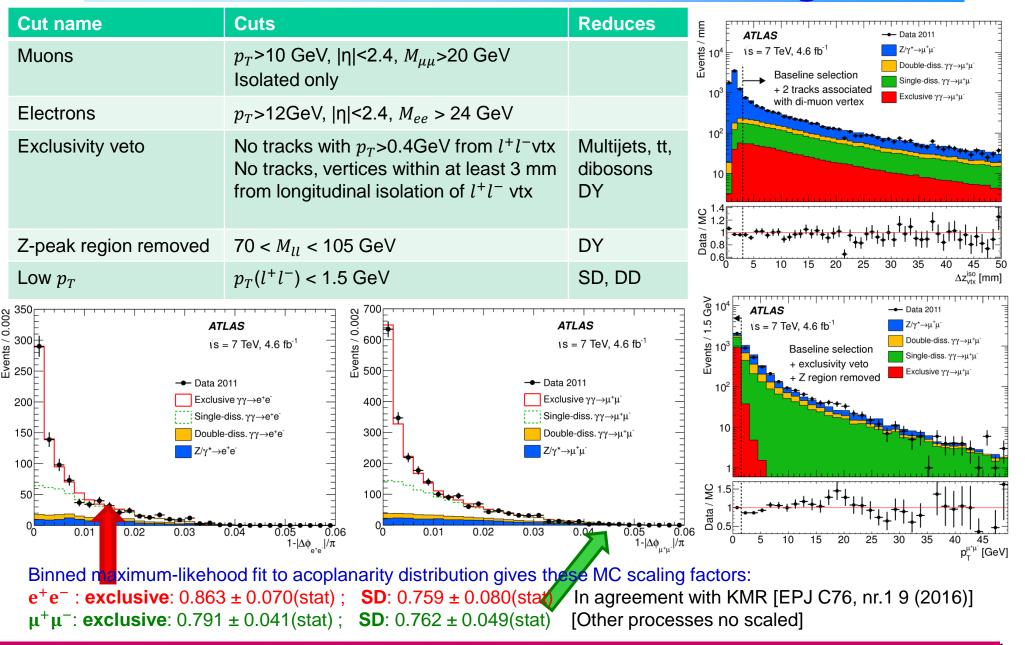



Marek Tasevsky (AS CR. Prague)

Exclusive $\gamma\gamma \rightarrow l^+l^-$


X'

Χ"



QED exclusive l^+l^- production: Elastic, SD, DD

Marek Tasevsky (AS CR, Prague)

Event selection & MC scaling

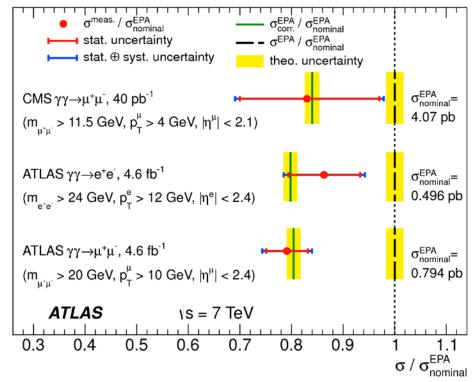
Marek Tasevsky (AS CR, Prague)

Results

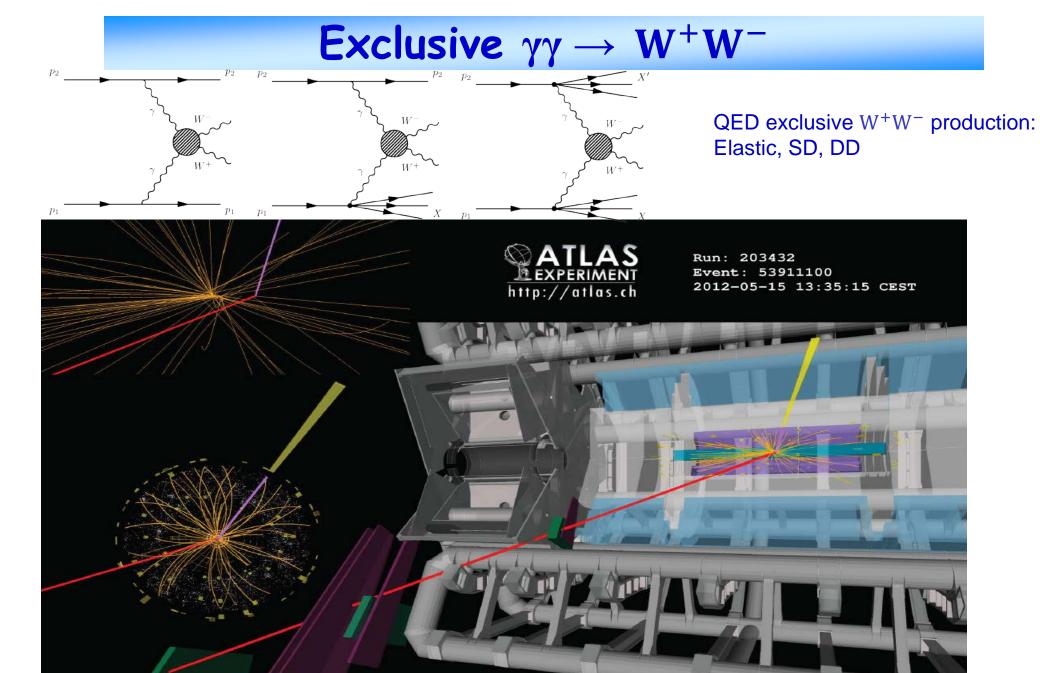
Measured fiducial x-section for exclusive $\gamma\gamma \rightarrow l^+l^-$ =

MC scaling factor for exclusive x predicted fiducial x-section for exclusive (based on EPA)

 $\sigma_{excl} (\gamma \gamma \rightarrow e^+ e^-) = 0.428 \pm 0.035 (stat) \pm 0.018 (syst) \text{ pb}$


 $\sigma_{excl} (\gamma \gamma \rightarrow \mu^+ \mu^-) = 0.628 \pm 0.032 (stat) \pm 0.021 (syst) pb$

Most appropriate is to compare these with x-sections based on EPA and corrected for finite size of proton (absorptive corrections) [PLB 741 (2015) 66] {~20%}:


 $\sigma_{excl} (\gamma \gamma \rightarrow e^+ e^-)$ (EPA, corr.) = 0.398 ± 0.007(theor) pb

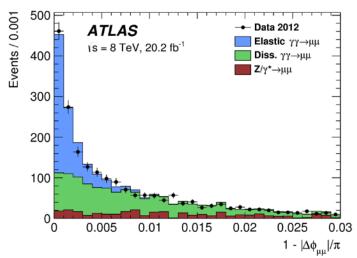
 σ_{excl} ($\gamma\gamma \rightarrow \mu^+\mu^-$) (EPA, corr.) = 0.638 ± 0.011(theor) pb

Good agreement with theory predictions (based on EPA) after including absorptive corrections
 Improved precision and good agreement with CMS measurement

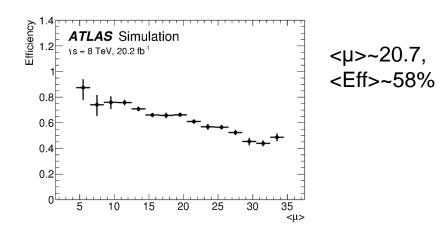
Marek Tasevsky (AS CR, Prague)

Marek Tasevsky (AS CR, Prague)

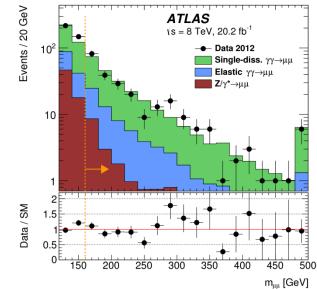
Event selection, validation & MC scaling



Complete set of cuts:


Variable	Excl W^+W^-	Excl Higgs	
p_T^{lep}	$>$ 25, 20 ${\rm GeV}$	$>25,15~{\rm GeV}$	
$m_{e\mu}$	$> 20 { m GeV}$	$> 10 { m ~GeV}$	
$p_T^{e\mu}$	$> 30 { m GeV}$	$> 30 { m GeV}$	
Δz_0^{iso}	1mm	1mm	
$p_T^{e\mu}$ (aQGC)	$> 120 { m ~GeV}$	-	
$m_{e\mu}$	-	$< 55 { m GeV}$	
$\Delta \phi_{e\mu}$	-	< 1.8	
mT	-	$< 140 { m ~GeV}$	

Validation using $\gamma \gamma \rightarrow l^+ l^-$:


Ratio of observed elastic to predicted elastic (nominal EPA): 0.76 +- 0.04(stat)+-0.10(syst)

Efficiency of the exclusivity selection (dilepton vtx longit. isolation) as a function of $<\mu>$:

Non-existent simulation of SD and DD $\gamma\gamma \rightarrow W^+W^-$ is accounted for by multiplying predicted elastic $\gamma\gamma \rightarrow W^+W^-$ events by a factor

$$f_{\gamma} = \frac{N_{\text{Data}} - N_{\text{Background}}^{\text{Powheg}}}{N_{\text{Elastic}}^{\text{Herwig++}}} \bigg|_{m_{\mu\mu} > 160 \text{ GeV}} =$$

 $3.30 \pm 0.22(\text{stat.}) \pm 0.06(\text{sys.})$

obtained using elastic $\gamma\gamma \rightarrow l^+ l^$ events at $m_{ll} > 160 \text{ GeV}$ [predictions by Herwig++] In agreement with KMR [1601.03772[hep-ph]] 14

Results: SM exclusive $\gamma\gamma \rightarrow W^+W^-$

GeV

10⁴

ATLAS

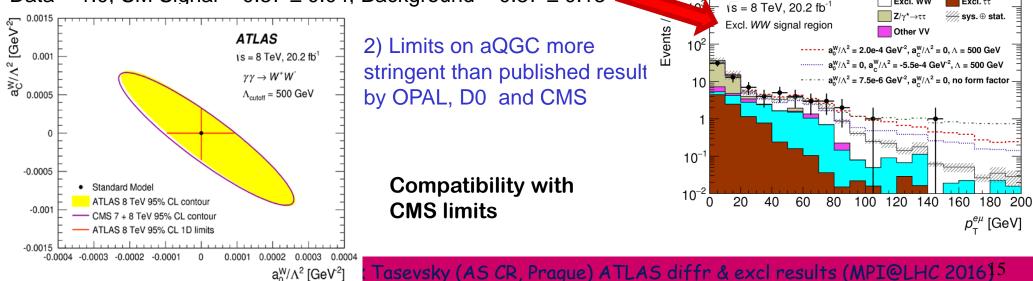
GeV

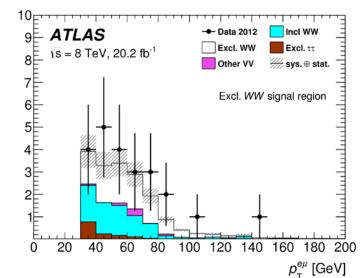
 \Box $\gamma\gamma \rightarrow W^+W^-$ cross section

1) Exclusive event yields:

Data = 23, Signal = 9.3 ± 1.2 , Background = 8.3 ± 2.6

Measured cross section extrapolated to the full $W^+W^- \rightarrow e\mu X$ 2) phase space:


 $\sigma_{excl}(\gamma\gamma \rightarrow W^+W^-) = 6.9 \pm 2.2(\text{stat}) \pm 1.4(\text{syst}) \text{ fb}$


The background-only hypothesis corresponds to significance of 3.0

Predicted cross section [by Herwig++] = 4.4 ± 0.3 fb 3)

Limits on anomalous quartic gauge couplings aQGC

Event yields for $p_T(e\mu) > 120$ GeV: 1) Data = 1.0, SM Signal = 0.37 ± 0.04 , Background = 0.37 ± 0.13

Data 2012

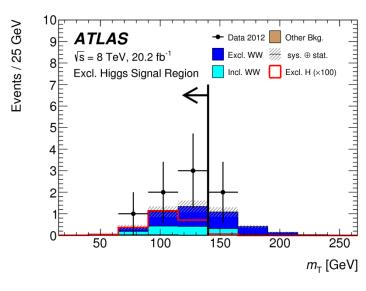
Excl. WW

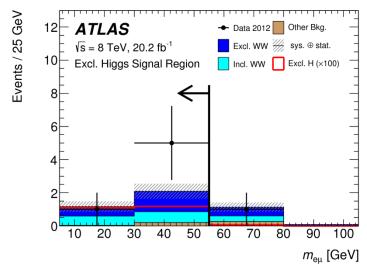
Incl WW

Excl. TT

Results: Exclusive Higgs

- \Box Exclusive Higgs \rightarrow W⁺W⁻ \rightarrow $e^{\pm}\mu^{\mp}$ X
- Exclusive Higgs event yields:
 Data = 6, Signal = 0.023 +- 0.003, Background = 3.0 +-0.8


Signal = just elastic Higgs, obtained using KMR calculations (gluon-induced production)


Background = dominantly exclusive W^+W^- and inclusive W^+W^- Exclusive W^+W^- background obtained by scaling Herwig++ by f_{γ} =3.3

2) Yields converted to upper limits of the exclusive Higgs boson total production cross section using CLs technique:

 σ < 1.2 pb at 95% CL (Observed) σ < 0.7 pb at 95% CL (Expected)

 σ (Higgs production by KMR) ~ 3 fb \rightarrow the upper limit is 400x higher

Marek Tasevsky (AS CR, Prague)

Summary

Diffractive dijets:

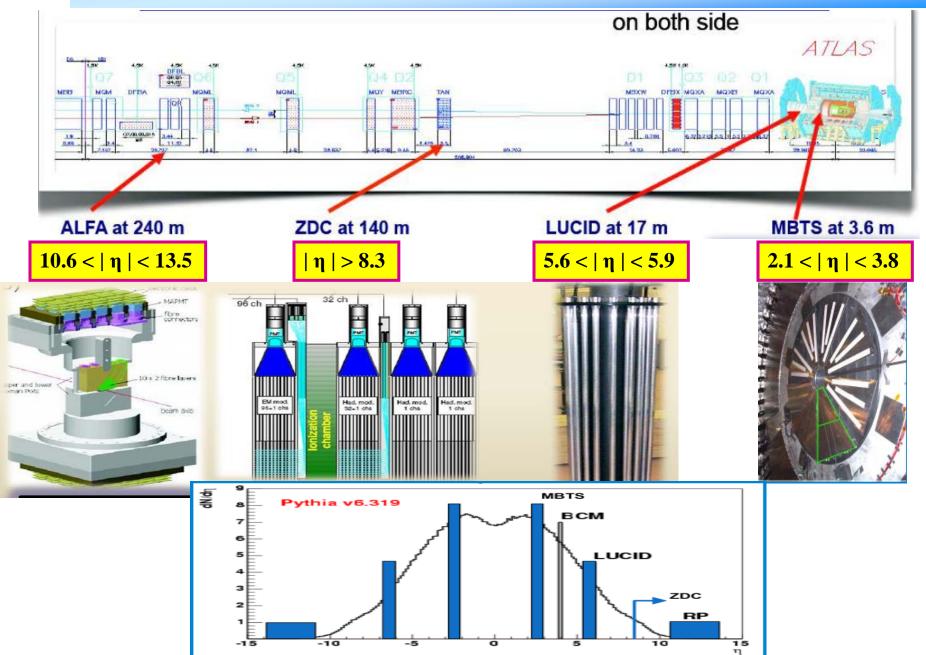
> rapidity gap and ξ measurement at a hard scale:

- Measurement sensitive to hard diffractive processes
- No gap plateau is observed contrary to the inclusive gap analysis
- Gap survival probability S² = 16 ± 4 (stat.) ± 8 (syst.) % [using anti-kt R=0.6] (model dependent number in the context of Pomwig and Pythia 8)

- Pythia8 ND prediction extends to very large gaps and small $\xi \to$ no need for S^2 to describe the ATLAS data

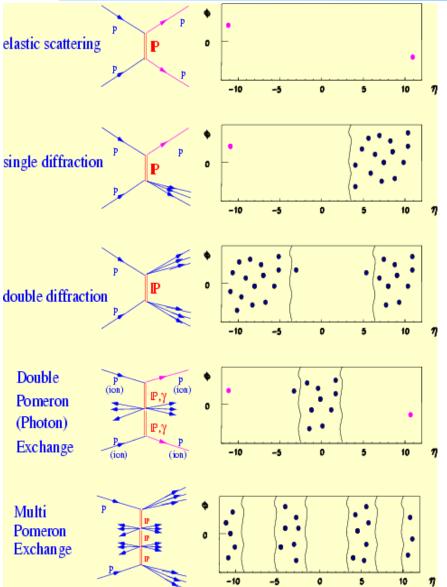
□ Exclusive (Photon-induced) processes:

$\succ \gamma \gamma \rightarrow l^+ l^-$:

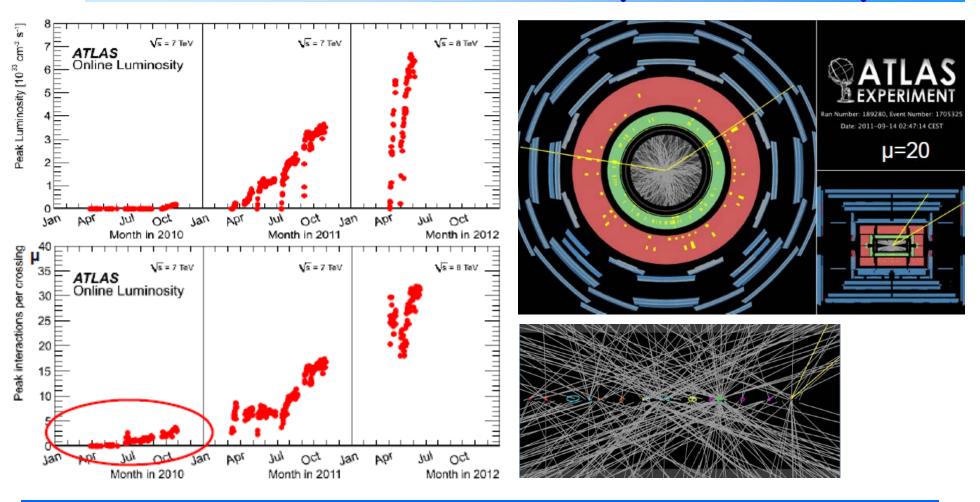

- Cross sections measured and the necessity of absorptive corrections (~20%) to EPA calculations confirmed

≻ γγ→W⁺W⁻:

- Evidence (significance of 3.0) of SM $\gamma\gamma \rightarrow W^+W^-$ process obtained
- Anomalous quartic gauge couplings: no excess seen but limits improved
- Exclusive Higgs \rightarrow W⁺W⁻: first observed upper limits for the total x-section of Higgs prod.


BACKUP SLIDES

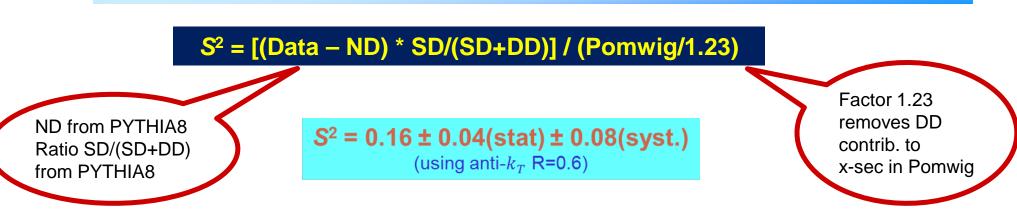
ATLAS Forward detectors


19

Diffraction at LHC:

- Forward proton tagging in special runs with ALFA
- Combined tag of proton in ALFA on one side (accompanied by large gap) and remnants of dissociated proton in LUCID on the other side. In the world w/o ALFA: rely on gaps
- Central rapidity gap in EM/HAD calorimeters ($|\eta|$ <3.2) and inner detector ($|\eta|$ <2.5)
- Rapidity gaps on both sides of IP: Double Pomeron Exchange: parton from Pomeron brings a fraction β out of ξ into the hard subprocess \rightarrow Pomeron remnants spoil the gaps Central exclusive production: $\beta = 1 \rightarrow$ no Pomeron remnants

Diffraction needs very low Pile-up



Pile-up = soft particles sitting on top of the hard-scale event, influencing efficiencies of various finding algorithms (Primary vertex, triggers, jets and other usual objects).

Marek Tasevsky (A5 CR, Prague)

ATLAS diffraction and exclusive results (MPI@LHC 2016)²¹

Gap Survival Probability

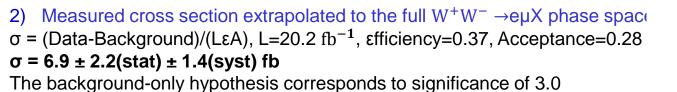
- S^2 estimated from the lowest $\tilde{\xi}$ bin: -3.2 < log_{10} \tilde{\xi} < -2.5
 - Δn^{F} distribution not used because of larger stat. unc. and worse Data/ND suppression
 - Very model dependent number
- ✤ Systematic uncertainties for S²:
 - Based on systematics seen in data
 - Other models? ND: Powheg NLO ND instead of Pythia8 LO ND : S² = 0.15 ± 0.04

- HERWIG++ ND produces bumps and too large gaps

SD,DD: Phojet does not contain hard diffraction

- PYTHIA8 the only to model hard diffraction and separating SD from DD

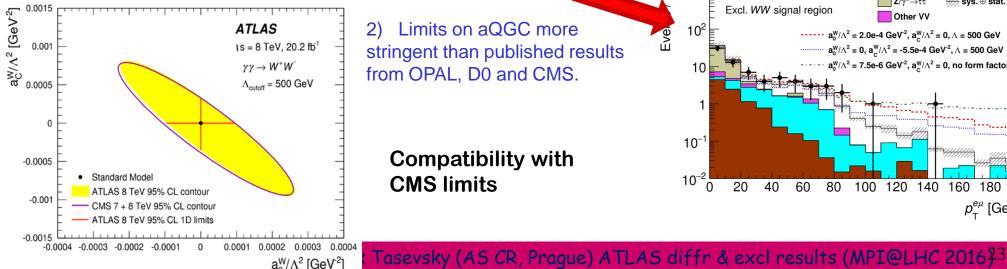
- Result for anti- $k_{t} R = 0.6$ is regarded as the best estimate of S^{2}
 - Smaller statistical uncertainties
 - Smaller dependence on ND prediction (0.6: Data/ND ~ 5; 0.4: Data/ND ~3)
 - Compatible with result from the <u>CMS Collaboration</u>: $S^2 = 0.12 \pm 0.04$

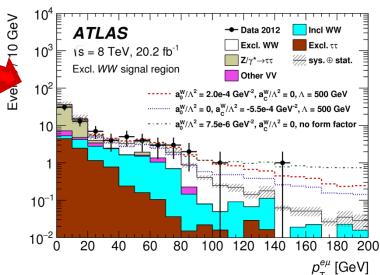

Marek Tasevsky (AS CR, Prague)

Results: SM exclusive $\gamma\gamma \rightarrow W^+W^-$

\Box yy \rightarrow W⁺W⁻ cross section

GeV Events /




Predicted cross section [by Herwig++] = 4.4 ± 0.3 fb 3)

Limits on anomalous quartic gauge couplings aQGC

Event yields for $p_T(e\mu) > 120$ GeV: 1)

Data = 1.0, SM Signal = 0.37 ± 0.04 , Background = 0.37 ± 0.13

ATLAS Incl WW Excl. TT Excl. WW s = 8 TeV, 20.2 fb⁻¹ ₩ svs. ⊕ stat. Other VV Excl. WW signal region 100 120 140 160 80 180 200 0 20 60 $p_{\tau}^{e\mu}$ [GeV]