(Partial) Summary of DPS experimental session

Jonathan Gaunt, Paolo Gunnellini
Many measurements available by all experiments and differential distributions available

For DPS extraction, mainly the different topology of SPS and DPS events is investigated: pT balance, $\Delta \Phi$, ΔS...

Can we find more observables?
In order to extract the DPS contribution, need for a reliable SPS background definition DPS signal is affected by that!

First 13 TeV results!!

DPS contribution

\[\sigma_{\text{eff}} \text{ comp. with 14.5 mb} \]
Sigma effective is always (strongly) model (Monte Carlo) dependent!!!

\[\sigma_{\text{eff}} \approx 11 \text{ mb} \] (if P8 considered)

\[\sigma_{\text{eff}} \approx 20 \text{ mb} \] (if MG + P8 considered)
More pure channels!

So far not enough statistics but very promising for Run II

$\sigma_{\text{eff}} > 5.3 \text{ mb}$

$\sigma_{\text{eff}} > 5.91 \text{ mb}$

$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

$pp \rightarrow \text{prompt } J/\psi + Z$

Data

Double Parton Scattering

Pileup

Pileup and DPS Uncertainty

CMS Preliminary, $pp \rightarrow l^+ l^- \gamma$ at $\sqrt{s} = 8 \text{ TeV}$
Experimental challenge is indeed to reduce the uncertainties...but this comes from σ_{eff} extraction, not always from the data.

One should agree on a value of σ_{eff} to be used in measurements: perhaps the one measured at 7 or 13 TeV (and not the CDF result).

Very important that the differential Measured distributions are released in RIVET!
Questions

• Need for new observables, sensitive to DPS for “old” and “new” channels?

• Triple parton scattering: is that realistic? Which channels can one use?

• Which data would be necessary to extract DPDs?

• Current statistics makes double differential cross sections feasible (in different x regimes, particle multiplicities, other?)