Open charm production in Double Parton Scattering processes in the forward kinematics

Mark Strikman

PSU

for Boris Blok
B.Blok, M.Strikman
arXiv: I 608.000 I4; arXiv: I 6 I I. 03649
in press

inclusive rate does not depend on transverse size
geometrical picture - $4 \rightarrow 4$

$$
\begin{aligned}
& \text { In LT limit } x_{I}-x \ll x_{1}
\end{aligned}
$$

J / Ψ elastic photoproduction data

$F_{2 g}(x \sim 0.03, t)=\left(1-t / m_{g}^{2}\right)^{-2}, m_{g}^{2} \sim 1.1 G e V^{2}$
Independent particle (mean field) approximation
$\sigma_{e f f}=\frac{28 \pi}{m_{g}^{2}} \sim 34 \mathrm{mb}$.
Frankfurt, MS, Weiss 03
For $\mathrm{m}^{2}=0.7 \mathrm{GeV}^{2} \sim 54 \mathrm{mb}$

$$
\frac{1}{\sigma_{e f f}}=\int \frac{d^{2} \Delta}{(2 \pi)^{2}} F_{2 g}^{4}(\Delta)=\frac{m_{g}^{2}}{28 \pi}
$$

Puzzle - need correlations. what is their origin?

Correlation mechanisms

Generated by the pQCD evolution: 3 to 4
parton splits into two partons with close impact parameters in the process of DGLAP Q^{2} evolution
Correlation grows with Q^{2} ($\sigma_{\text {eff }}$ drops)

In the boundary condition at low Q washed out by pQCD evolution ($\left.\sigma_{\text {eff }} g r o w s\right)$

$$
\begin{aligned}
& { }_{[1]} D_{a}^{b, c}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right) \\
& \qquad=\sum_{a^{\prime}, b^{\prime}, c^{\prime}} \int_{Q_{\min }^{2}}^{\min \left(q_{1}^{2}, q_{2}^{2}\right)} \frac{d k^{2}}{k^{2}} \frac{\alpha_{\mathrm{s}}\left(k^{2}\right)}{2 \pi} \\
& \quad \times \int \frac{d y}{y^{2}} G_{a}^{a^{\prime}}\left(y ; k^{2}, Q_{0}^{2}\right) \\
& \quad \times \int \frac{d z}{z(1-z)} P_{a^{\prime}}^{b^{\prime}\left[c^{\prime}\right]}(z) G_{b^{\prime}}^{b}\left(\frac{x_{1}}{z y} ; q_{1}^{2}, k^{2}\right) \\
& \quad \times G_{c^{\prime}}^{c}\left(\frac{x_{2}}{(1-z) y} ; q_{2}^{2}, k^{2}\right) .
\end{aligned}
$$

$$
\begin{align*}
& { }_{[2]} D_{a}^{b, c}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right) \\
& =S_{b}\left(q_{1}^{2}, Q_{\min }^{2}\right) S_{c}\left(q_{2}^{2}, Q_{\min }^{2}\right)_{[2]} D_{a}^{b, c}\left(x_{1}, x_{2} ; Q_{0}^{2}, Q_{0}^{2} ; \vec{\Delta}\right) \\
& \quad+\sum_{b^{\prime}} \int_{Q_{\min }^{2}}^{q_{1}^{2}} \frac{d k^{2}}{k^{2}} \frac{\alpha_{\mathrm{s}}\left(k^{2}\right)}{2 \pi} S_{b}\left(q_{1}^{2}, k^{2}\right) \\
& \quad \times \int \frac{d z}{z} P_{b^{\prime}}^{b}(z)_{[2]} D_{a}^{b^{\prime}, c}\left(\frac{x_{1}}{z}, x_{2} ; k^{2}, q_{2}^{2} ; \vec{\Delta}\right) \\
& \quad+\sum_{c^{\prime}} \int_{Q_{\min }^{2}}^{q_{2}^{2}} \frac{d k^{2}}{k^{2}} \frac{\alpha_{\mathrm{s}}\left(k^{2}\right)}{2 \pi} S_{c}\left(q_{2}^{2}, k^{2}\right) \\
& \quad \times \int \frac{d z}{z} P_{c^{\prime}}^{c}(z)_{[2]} D_{a}^{b, c^{\prime}}\left(x_{1}, \frac{x_{2}}{z} ; q_{1}^{2}, k^{2} ; \vec{\Delta}\right) . \tag{16}
\end{align*}
$$

D's are double GPDs

$$
\begin{aligned}
D_{a}^{b, c}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right)= & { }_{[2]} D_{a}^{b, c}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right) \\
& +{ }_{[1]} D_{a}^{b, c}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sigma_{e f f}} & \equiv \int \frac{d^{2} \vec{\Delta}}{(2 \pi)^{2}}\left[{ }_{[2]} G_{2}\left(x_{1}, x_{3}, Q_{1}^{2}, Q_{2}^{2} ; \vec{\Delta}\right)_{[2]} G_{2}\left(x_{2}, x_{4}, Q_{1}^{2}, Q_{2}^{2} ;-\vec{\Delta}\right)\right. \\
& +{ }_{[1]} G_{2}\left(x_{1}, x_{3}, Q_{1}^{2}, Q_{2}^{2} ; \vec{\Delta}\right)_{[2]} G\left(x_{2}, x_{4}, Q_{1}^{2}, Q_{2}^{2} ;-\vec{\Delta}\right) \\
& \left.+{ }_{[1]} G_{2}\left(x_{2}, x_{4}, Q_{1}^{2}, Q_{2}^{2} ; \vec{\Delta}\right)_{[2]} G_{2}\left(x_{1}, x_{3}, Q_{1}^{2}, Q_{2}^{2} ;-\vec{\Delta}\right)\right]
\end{aligned}
$$

2G2 and 1G2 are two parts of GPD ,calculated in two different ways. 2G2-in mean field approach, using GPD1 from charmonium photoproduction at HERA

$$
\begin{aligned}
& {[2] G P D_{2}\left(x_{1}, x_{3}, Q_{1}^{2}, Q_{2}^{2}, \Delta\right)=D_{q}\left(x_{1}, Q_{1}\right) D_{g}\left(x_{3}, Q_{2}\right) F_{2 q}\left(\Delta, x_{1}\right) F_{2 g}\left(\Delta, x_{3}\right),} \\
& \quad G P D_{q, g}\left(x, Q^{2}, \Delta\right)=D_{q, g}(x, Q) F_{2 g, 2 q}(\Delta, x) .
\end{aligned}
$$

We use parametrisation due to Frankfurt, Strikman, Weiss (2011)

1G2 is calculated solving evolution equation for GPD

The final answer for effective cross section is convenient to represent as

$$
\sigma_{\mathrm{eff}}=\frac{\sigma_{\mathrm{eff}}^{(0)}}{1+R}
$$

Here $\sigma_{\text {eff }}^{(0)}$ is the 4 to 4 cross section in mean field approximationwhile the function R corresponds to contribution due to 3 to 4 mechanism, and is calculated analytically.

Note: only one unknown paramter-Q0, separating soft and hard scales, so approach is practically model independent.

The total cross sections

$$
\begin{gathered}
\frac{d \sigma\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{d \hat{t}_{1} d \hat{t}_{2}}=\frac{d \sigma^{13}}{d \hat{t}_{1}} \frac{d \sigma^{24}}{d \hat{t}_{2}} \times\left\{\frac{1}{S_{4}}+\frac{1}{S_{3}}\right\} . \\
\frac{1}{S_{4}}=\int \frac{d^{2} \vec{\Delta}}{(2 \pi)^{2}}{ }_{[2]} D_{h_{1}}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right){ }_{[2]} D_{h_{2}}\left(x_{3}, x_{4} ; q_{1}^{2}, q_{2}^{2} ;-\vec{\Delta}\right) . \\
\frac{1}{S_{3}}=\int \frac{d^{2} \vec{\Delta}}{(2 \pi)^{2}}\left[{ }_{[2]} D_{h_{1}}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right)_{[1]} D_{h_{2}}\left(x_{3}, x_{4} ; q_{1}^{2}, q_{2}^{2}\right)+{ }_{[1]} D_{h_{1}}\left(x_{1}, x_{2} ; q_{1}^{2}, q_{2}^{2}\right)_{[2]} D_{h_{2}}\left(x_{3}, x_{4} ; q_{1}^{2}, q_{2}^{2} ; \vec{\Delta}\right)\right]
\end{gathered}
$$

In the LHC energies at central rapidities one typically find an enhancement ~ 2 from pQCD mechanism, which is consistent with the data. Few examples were studied by B.Blok and P. Gunnellini

Challenge are the LHCb double charm data: very accurate , small 2 to 4 background (previous talk)

$\sigma_{\text {eff }} \approx 20 \mathrm{mb}$

Forward kinematics -- two of x's are small. Gluon radius larger leading to larger $\sigma_{\text {eff }}$ larger than for central region with smaller pQCD effects which hardly can compensate this increase.

Soft correlations and unfactorizable initial conditions.

BDFS 2012, B.Blok M. Strikman 2016

$2 \mathbb{P}$ contribution to ${ }_{2} \mathrm{D}$ and Reggeon diagrams

For $\quad t=-\Delta^{2}=0 \quad$ consider

$$
\begin{gathered}
\rho\left(x_{1}, x_{2}, Q_{0}^{2}\right)=\frac{{ }_{2} D_{n f}\left(x_{1}, x_{2}, Q_{0}^{2}\right)}{D_{f}\left(x_{1}, x_{2}, Q_{0}^{2}\right)}=\frac{{ }_{2} D_{n f}\left(x_{1}, x_{2}, Q_{0}^{2}\right)}{D_{N}\left(x_{1}, Q_{0}^{2}\right) D_{N}\left(x_{2}, Q_{0}^{2}\right)}, \\
\rho\left(x_{1}, x_{2}, Q_{0}^{2}\right)=\int d M^{2} S\left(M^{2}\right) \frac{D_{N}\left(x_{1} / x, Q_{0}^{2}\right) D_{N}\left(x_{2} / x, Q_{0}^{2}\right)}{D_{N}\left(x_{1}, Q_{0}^{2}\right) D_{N}\left(x_{2}, Q_{0}^{2}\right)}, \\
\left.\omega \equiv \frac{\frac{d \sigma_{i n d d i f .} .}{d d_{c}}}{\frac{d \sigma_{l}}{d t}}\right|_{t=0}=0.25 \pm 0.05 \\
{ }_{2} D\left(x_{1}, x_{2}, Q_{0}^{2}\right)_{n f}=c_{3 \mathbb{P}} \int_{x_{m} / a}^{1} \frac{d x}{x^{2+\alpha_{\mathbb{P}}}} D\left(x_{1} / x, Q_{0}^{2}\right) D\left(x_{2} / x, Q_{0}^{2}\right)
\end{gathered}
$$

$$
K\left(x_{1}, x_{2}, Q_{1}^{2}, Q_{2}^{2}, Q_{0}^{2}\right) \equiv \frac{D\left(x_{1}, x_{2}, Q_{1}^{2}, Q_{2}^{2}, Q_{0}^{2}\right)}{D\left(x_{1}, Q_{1}^{2}\right) D\left(x_{2}, Q_{2}^{2}\right)}
$$

Transverse momentum dependence of K factor for ${ }_{2}$ GPD for regimes of small and large x in kinematics of chapter $2\left(\mathrm{Q}^{2}{ }_{0}=0.5 \mathrm{GeV}^{2}\right)$

$$
R_{\mathrm{tot}}=R_{\mathrm{pQCD}}+R_{\mathrm{soft}}
$$

Soft contribution is strongly enhanced due to much smaller t-slope: $\mathrm{B}_{\text {inel }} \ll \mathrm{B}_{\mathrm{e}}$.

$$
\begin{gathered}
R_{s o f t}=K_{12}\left(\frac{B_{1 \mathrm{el}}+B_{3 \mathrm{el}}}{B_{3 \mathrm{el}}+B_{1 \mathrm{in}}}+R_{\mathrm{pQCD}} \frac{B_{1 \mathrm{el}}}{B_{1 \mathrm{in}}}\right) \\
\sigma_{\mathrm{eff}} \sim 20-22 m b
\end{gathered}
$$

Numerical find: soft mechanism reduces sensitivity to Q_{0}

$\sigma_{\text {eff }}$ as a function of the D meson transverse momentum p_{t}

the same for B-mesons

Effect of soft term for central kinematics

Soft correlations are negligible for DPS regime (typical PT> $10-20 \mathrm{GeV}$), but maybe important for UE (several GeV scale).

Effective cross section

Effective cross section

Conclusions

MPI model with pQCD induced correlations and $\mathrm{Q}^{2} \sim \mathrm{I} \mathrm{GeV}^{2}$ starting DGLAP evolution scale and soft small x correlations agrees well with the data in most cases (notable exception is double J/psi production and first steps have been done to implement it numerically in MC generators.

Open questions
How unknown mechanism of PT cutoff affects $\sigma_{\text {eff }}$ at PT of few GeV .

NLO effects for 3 to 4

