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It is worth noting here that the popular Monte Carlo description of the pp

collisions at the collider energies — PYTHIA uses x-independent transverse
distribution of partons described by the sum of two exponentials. This
distribution roughly equivalent to the dipole parametrization with m

2 ⇡
2 GeV2 [6] which is hardly consistent with the data on J/ photoproduction,
see dashed line in Fig. 3. For smaller x the difference is even larger since
the transverse size increases with decrease of x — see Eq. (7).

3. Impact parameter distribution of proton–proton collisions
with dijet production

Using the information on the transverse spatial distribution of partons
in the nucleon, one can infer the distribution of impact parameters in pp

collisions with hard parton–parton processes [2]. It is given by the overlap
of two parton wave function as depicted in Fig. 4.
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Fig. 4. Overlap integral of the transverse spatial parton distributions, defining the
impact parameter distribution of pp collisions with a hard parton–parton process,
Eq. (8).

The probability distribution of pp impact parameters in events with a
given hard process, P2(x1, x2, b|Q2

), is given by the ratio of the cross-section
at given b and the cross-section integrated over b. As a result,

P2

�
x1, x2, b|Q2

�
⌘

Z
d

2
⇢1

Z
d

2
⇢2 �

(2)
(b� ⇢1 + ⇢2)

⇥Fg

�
x1, ⇢1|Q2

�
Fg

�
x2, ⇢2|Q2

�
(8)

which, obviously, satisfies the normalization condition
Z

d
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= 1 . (9)

This distribution represents an essential tool for phenomenological studies
of the underlying event in pp collisions [2, 3]. We note that the concept of
impact parameter distribution is also used in MC generators of pp events
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over ki we obtain that transverse coordinates of par-
tons in the in the amplitude and the amplitude con-
jugated are equal ⇤i = ⇤f . In the calculation we use
the fact that that upper limit of integration over k2t is
very large compared with the inverse hadron size. Next
step is to perform integration over � which produces
�(✓⇤1�✓⇤2�✓⇤3+✓⇤4) =

⇤
d2B�(✓⇤1�✓⇤3� ✓B)�(✓⇤2�✓⇤4� ✓B).

The delta functions express the fact that within the ac-
curacy 1/pt where pt is the hard scale, the interactions of
partons from di⇥erent nucleons occur at the same point.
✓B is the relative impact parameter of two nucleons.
The expression for the cross section in the impact pa-

rameter space has the form which corresponds to geom-
etry of Fig.2
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Here the GPD in the impact parameter space represen-
tation is given by
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The functions ⇧(x1, ✓⇤1, x2, ✓⇤2, ...) are just the Fourier
transforms in the impact parameter space of the light
cone wave functions and are given by
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Thus the GPD defined in Eq. 5 is equivalent to the
representation for cross section that indeed corresponds
to the simple geometrical picture, but instead of a triple
integral we now have an integral over one momentum �.
Moreover, to determinate the cross section we need to
know the D(�). The GPD defined in Eq. 5 is useful
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FIG. 2: Geometry of two hard collisions in impact parameter
picture.

for calculation of many di⇥erent processes. At the same
time the knowledge of the full double GPD is necessary
for complete description of events with a double jet trig-
ger since the pedestal strongly depends on the impact
parameter ✓B [10].
Let us stress that this picture is a natural generaliza-

tion of the correspondence between momentum represen-
tation and geometric picture for a conventional case of
two ⇤ two collisions. Indeed in this case it is easy to see
that the cross section in the momentum representation

⌅2 =

⌃
f(x1, p

2)f(x2, p
2)
d⌅h

dt̂
dt̂ (14)

has a simple geometric representation
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2)f(x2, ✓B � ✓⇤1, p

2)
d⌅h

dt̂
dt̂,

(15)
where

f(x, ✓⇤, p2) = ⇧+(x, ✓⇤, p2)⇧(x, ✓⇤, p2), (16)

and ⇧(x, ⇤) is the Fourier transform of the light cone wave
function defined above.
Let us now summarize our results. We have argued

that there exists the kinematical domain where the four
⇤ four hard parton collisions form the dominant mecha-
nism of four-jet production. In this region we calculated
the cross section, see Eqs. 2-4 and found that it can be
expressed through new two particle GPDs (see Eq. 5), ex-
pressed through light cone wave functions. These GPDs
depend on a transverse vector ✓� that measures the trans-
verse distance within the parton pairs. (Equivalent ex-
pressions for these GPDs can be easily given in terms of
the operator products.) In the impact parameter space
we derived the widely used intuitive geometric picture.
We argued that the enhancement of a four-jet cross sec-
tion is due to nonperturbative short range correlations in
the hadron, as determined by the range of integral of �.
The contribution of perturbative correlations in the ap-
propriate kinematic domain is suppressed. The detailed

geometrical picture -  4 → 4

inclusive rate does not 
depend on transverse size DPI rate ∝ 1/(transverse size)2 
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J/ψ elastic photoproduction data
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the analysis of ref.20 .
.
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Fig. 2. The exponential t–slope, BJ/� , of the di�erential cross section of exclusive
J/� photoproduction measured in the FNAL E401/E458,13 HERA H1,15 and ZEUS14

experiments, as a function of x = M2
J/�/W

2. (In the H1 and ZEUS results the quoted

statistical and systematic uncertainties were added linearly.) The dashed lines represent
the published two–dimensional fits to the H1 and ZEUS data.14,15 The parameter Bg in
the exponential two–gluon form factor is related to the measured J/� slope by Eq. (4).
Our parametrization Eqs. (5)–(8) is shown by the solid line.

The data can be fitted as

Bg(x) = Bg0 + 2�⇥
g ln(x0/x), (5)

x0 = 0.0012, (6)

Bg0 = 4.1 (+0.3
�0.5) GeV�2, (7)

�⇥
g = 0.140 (+0.08

�0.08) GeV�2. (8)

Fits of similar quality are produced with a dipole with

Fg(x, t|Q2) = (1� t/m2
g)

�2, Bg = 3.2/m2
g. (9)

The spatial distributions of gluons in the transverse plane for two fits
are given by

Fg(x, ⇤|Q2) =

�
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(2⇥Bg)
�1 exp[�⇤2/(2Bg)],

[m2
g/(2⇥)] (mg⇤/2) K1(mg⇤),

(10)

These transverse distributions are similar for average ⇤, leading, for exam-
ple, to nearly identical distributions over the impact parameter for pro-
duction of the dijets in pp collisions16 . At the same time, dipole fits gives
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|t| = 0.5 GeV2, where they are best constrained by present data (see Fig. 3
of Ref. [4]); this corresponds to [3]

Bg = 3.24/m

2
g . (6)

The analysis of the HERA exclusive data leads to

Bg(x) = Bg0 + 2↵

0
g ln(x0/x) , (7)

where x0 = 0.0012, Bg0 = 4.1 (

+0.3
�0.5) GeV�2

,↵

0
g = 0.140 (

+0.08
�0.08) GeV�2 for

Q

2
0 ⇠ 3 GeV2. For fixed x, B(x, Q

2
) slowly decreases with increase of Q

2

due to the DGLAP evolution [2]. The uncertainties in parentheses represent
a rough estimate based on the range of values spanned by the H1 and ZEUS
fits, with statistical and systematic uncertainties added linearly. This esti-
mate does not include possible contributions to ↵0g due to the contribution
of the large size configurations in the vector mesons and changes in the evo-
lution equation at �t comparable to the intrinsic scale. Correcting for these
effects may lead to a reduction of ↵0g and hence to a slower increase of the
area occupied by gluons with decrease of x.
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Fig. 3. t-dependence of the exclusive J/ photoproduction data from the FNAL
E401/458 experiment [5]. Solid line: t-dependence obtained with the exponential
parametrization of the two-gluon form factor, Eq. (5) (the slope of the J/ cross-
section is BJ/ = Bg + �B, where �B ⇡ 0.3 GeV�2 accounts for the finite size of
the J/ ; see [3] for details). Dashed line: t-dependence obtained with the dipole
parametrization, Eq. (5). Dotted line: t-dependence obtained with PYTHIA, ef-
fectively corresponding to a dipole form factor with m

2 ⇡ 2 GeV2.

with σeff =15 mb

Frankfurt, MS,Weiss 03

For m2=0.7 GeV2   ~  54 mb
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Puzzle - need correlations. what is their origin?

Independent particle (mean field) approximation
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Correlation mechanisms

Generated by the pQCD evolution:  3 to 4 

In the boundary condition at low Q

parton splits into two partons with close impact parameters 
in the process of DGLAP   Q2 evolution

Correlation grows with Q2 (σeff drops)

washed out by pQCD evolution  (σeff grows) 

5

5

FIG. 2: Sketch of the two considered DPS mechanisms: 2 ⌦ 2 (left) and 1 ⌦ 2 (right) mechanism.

III. MEAN FIELD APPROXIMATION ESTIMATE OF �e↵

Recall that in the mean field approach (see Fig.2 left ) double parton GPDs, describing the

DPS, are
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D’s are double GPDs
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2G2 and 1G2 are two parts of GPD ,calculated in two different ways. 2G2-in mean field 
approach, using GPD1 from charmonium photoproduction at HERA

We use parametrisation  due to Frankfurt,Strikman,Weiss (2011) 

1G2 is calculated solving evolution equation for GPD
The final answer for effective cross section is convenient to represent as 

Here              is the 4 to 4 cross section in mean field approximationwhile the function R  
corresponds to contribution due to 3 to 4 mechanism, and is calculated analytically.

Note: only one unknown paramter-Q0, separating soft and hard scales, so approach is  
practically model independent.
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The total cross sections
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D0 physics (slightly larger energies )

photon + 3 jets

In the LHC  energies at central rapidities one typically find an 
enhancement  ~ 2 from pQCD mechanism, which is consistent with 
the data. Few examples were studied by B.Blok and P. Gunnellini

9



Challenge are the LHCb double charm data: very 
accurate , small 2 to 4 background ( previous talk)

σeff ≈20 mb

Forward kinematics -- two of x’s are small. Gluon radius larger 
leading to larger σeff  larger than for central region with smaller 

pQCD effects which hardly can compensate this increase. 

Soft correlations and unfactorizable initial conditions.

B
BDFS 2012, B.Blok M. Strikman  2016

3

does not show up in the LHCb data.

In this letter we demonstrate that the new LHCb data [23–26] corresponding to the forward

kinematics can be explained by taking into account two e↵ects: buildup with increase of Q

2 of the

perturbative correlations – the 1 ⌦ 2 mechanism, calculated using DGLAP formalism [4, 7, 9, 10]

and soft small x parton - parton correlations in the nucleon wave function which result in a non-

factorized contribution to the initial conditions of the double parton GPD which can be estimated

using information on di↵raction in lepton / hadron – nucleon scattering following the ideas first

presented in [7].

The paper is organized as follows. In section two we describe the kinematics of the LHCb

experiment. In the third chapter we present that the mean field approximation results for the rate

of DD production and demonstrate that they are a factor of two lower than the data. In section

four we present results for the 1 ⌦ 2 mechanism contribution (see Fig. 2) to the cross section, In

section five we discuss the Reggeon model based estimate of the non-factorized contribution to the

initial conditions at Q

2

0

⇠ 0.5 � 1GeV2, and its Q

2 evolution. In section six we present general

formula for �e↵ combining the mean field,1 ⌦ 2 and nonperturbative non-factorized contributions.

In section seven we demonstrate that the simultaneous account of all three DPS mechanisms leads

to the �

eff

values consistent with the data. The results are summarized in section eight.

II. KINEMATICS OF THE LHCB STUDY OF THE DOUBLE CHARM PRODUCTION

c
c

c
c

-

-

N

N

x1
x2

x3

x4

FIG. 1: Kinematics of double charm production at LHCb.

So far LHCb experiment has presented results for �e↵ integrated over a significant range of

10
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The soft Pomeron amplitude is practically pure imaginary [38] see also [39] for most recent

experimental measurements. As a result, this amplitude equals to the amplitude of the di↵ractive

cut of the two-Pomeron diagram of Fig. 4. The two contributions to the cut are the elastic

and di↵ractive intermediate states. The elastic intermediate state obviously corresponds to the

uncorrelated contribution to
2

D, while the inelastic di↵ractive cut encodes correlations.

+

p p p
p

p p p
MX

x x x x x x1 1 12 2 2

FIG. 4: 2IP contribution to 2D and Reggeon diagrams

Note here that in di↵erence from the conventional situation of di↵raction into large masses, the

rapidity intervals occupied by the Pomeron ladders from which partons with fractions x
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/x take into account a smaller rapidity intervals occupied by the ladders in the

case of transition to inelastic di↵ractive states. The factor

S(M2) = C
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corresponds to the cut Pomeron that splits into two Pomerons in diagram 4. It is equal to the

product of the triple Pomeron vertex and square of proton - Pomeron residues, cf. [38, 40]. Here

we use ↵
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that is to the ratio of inelastic and elastic di↵raction in DIS for the invariant �p energy s = m

2

0

/x.

Using the triple reggeon parametrization of the cross section we can determine normalization

of the three pomeron vertex C

3IP

in eq. 13 from the HERA data [42, 43] for the ratio of inelastic

and elastic di↵raction at t = 0 in the processes of vector meson production:

! ⌘
d�in. dif.

dt

d�el
dt

|
t=0

= 0.25 ± 0.05, (15)

The constant C

3IP

is roughly the same for di↵ractive production of light mesons and J/ in a

wide range of Q

2, thus confirming the hypothesis of a smooth transition between soft and hard

regimes. It is determined from the condition ⇢(x
1

, x

1

, Q

2

0

) = !, where x

1

⇠ 0.001, that corrsponds

to HERA data in [42, 43]. Note here that to have a smooth connection with the low Q

2 gluon

density model of GRV we take the x-dependence of gluon density at small x from this model. This

may corresponds to relatively hard e↵ective Pomeron in the lower legs though a priori density of

partons in the Pomeron may grow more rapidly at small x than the overall Pomeron dominated

amplitude.

In the Reggeon calculus [38] the e↵ective triple Pomeron coupling is expected to decrease slowly

with energy due to screening corrections somewhat reducing the rate of the increase of ! expected

in the unscreened triple Pomeron model.

In any case, our procedure involves normalizing parameters of the model for x ⇠ 10�3 and

studying a relatively narrow x range 10�4

< x < 10�2. As a result our results are not sensitive to

the variation of the Pomeron intercept between the soft and hard values.

Accordingly, for the parton density in the ladder we use:

xD(x, Q

2

0

) =
1 � x

x

�(Q

2
0)

, (16)

where the small x intercept of the parton density � is taken from the GRV parametrization [44]

for the nucleon gluon pdf at Q

2

0

at small x. Numerically �(0.5 GeV2) ⇠ 0.27, �(1.0 GeV2) ⇠ 0.31

Using eqs. 15, 12, 13 and the above values of �(Q2

0

) we obtain C

3IP

= 0.125 ± 0.025 GeV�2 for

Q

2

0

= 0.5 GeV2, and C

3IP

= 0.14 ± 0.025 GeV�2 for Q

2

0

= 1 GeV2.

As a result we can estimate
2

D(x
1

, x

2

, Q

2

0

)
nf

as

2

D(x
1

, x

2

, Q

2

0

)
nf

= c

3IP

Z
1

xm/a

dx

x

2+↵IP
D(x

1

/x, Q

2

0

)D(x
2

/x, Q

2

0

), (17)
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In the language of the Reggeon calculus this is a consequence of the well known observation that

the t-dependence of three Pomeron vertex is much weaker than of the square of the ppIP vertex,

see e.g. [40].

The evolution of the initial conditions, eq. 17, is given then by

2

D(x
1

, x

2

, Q

2

1

, Q

2

2

) =
Z

1

x1

dz

1

z

1

Z
1

x2

dz

2

z

2

G(x
1

/z

1

, Q

2

1

, Q

2

0

)G(x
2

/z

2

, Q

2

2

, Q

2

0

)
2

D(z
1

, z

2

, Q

2

0

), (21)

where G(x
1

/z

1

, Q

2

1

, Q

2

0

) is the conventional DGLAP gluon-gluon kernel [46] describing evolution

from Q

2

0

to Q

2

1

, Q

2

2

. In our calculations we neglect initial sea quark densities in the Pomeron at

scale Q

2

0

(obviously Pomeron does not get contribution from the valence quarks).

Let us define the quantity K (generalizing ⇢ from eqs. 11,12 to arbitrary Q

2

1

, Q

2

2

):

K(x
1

, x

2

, Q

2

1

, Q

2

2

, Q

2

0

) ⌘ D(x
1

, x

2

, Q

2

1

, Q

2

2

, Q

2

0

)

D(x
1

, Q

2

1

)D(x
2

, Q

2

2

)
. (22)

The nominator of this quantity is given by integral 21, while the denominator is a product of the

conventional PDFs. We carried the numerical calculation of K for Q

2

0

= 0.5 GeV2 and Q

2

0

= 1.0

GeV2. The typical results are presented in Fig. 5. (the corresponding x

i

are taken in accordance

with analysis of section 2, and the calculations are carried out at t=0.).

One can see that K grows with increase of Q

2

0

and that the QCD evolution leads to the suppres-

sion of the nonperturbative contribution. We perform calculation neglecting the PPR (Pomeron-

Pomeron-Reggeon) contribution. Inclusion of this term would increase the result by ⇠ 10%. Overall

we estimate the errors in the K-factor due to uncertainties in the input parameters are ⇠ 25-35%.

The characteristic feature of K-factor is its increase as one considers more forward kinematics

for charm production. Moreover, if we start from smaller x

1

, x

2

the rate of decrease of K with

the increase of transverse momenta decreases. We illustrate these features in Fig. 5, where we

consider K for the charm production kinematics described in section 2 (in Fig.5 Q

2

0

= 0.5 GeV2,

the behaviour for Q

2

0

= 1 GeV2 is similar. Upper curve is K for the
2

GPD with small x ⇠ 10�4

gluons and lower one – for larger x ⇠ 10�2. We can see that main non-factorizable contribution

originates from a smaller x gluon pair. The same is true for production of cc̄bb̄ and bb̄bb̄.

One can see from Fig.5 that K(x, Q

2) decreases strongly with increase of Q

2. This reflects the

increase of typical x at Q

2

0

scale contributing to K(x, Q

2) with increase of Q

2 and a fast decrease

of K(x, Q

2

0

) with increase of x (remember that K(x � 0.05 � 10�1

, Q

2

0

) ⇡ 0 and grows strongly

with decrease of x less than 10�2.

12

K small x gluons

K large x gluons

4 6 8 10 12
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

pt GeV

K

FIG. 5: Transverse momentum dependence of K factor 22 for 2GPD for regimes of small and large x in

kinematics of chapter 2 (Q2
0 = 0.5 GeV2 )

VI. CONTRIBUTION OF THE CORRELATED TERM IN THE INITIAL CONDITIONS

TO DPS.

We can now write the general expression for �e↵ taking into account non-factorized contribution

to the initial conditions, the 1 ⌦ 2 mechanism and the mean field contribution.

1

�

e↵

=
Z

d

2�

(2⇡)2
(exp(�(B

1el

+ B

2el

)�2

/2) + S

12 pQCD

+ K

12

exp(�(B
1in

+ B

2in

)�2

/2.))

⇥ (exp(�(B
3 el

+ B

4 el

)�2

/2) + S

34 pQCD

+ K

34

exp(�(B
3in

+ B

4in

)�2

/2))).

(23)

Here B

i

⌘ B(x
i

), and

S

ij pQCD

⌘ S(x
i

, x

j

, Q

2

i

, Q

2

j

) =
2

D

1

(x
i

, x

j

, Q

2

i

, Q

2

j

)

D(x
i

, Q

2

i

)D(x
j

, Q

2

j

)
. (24)

Also

K

ij

⌘ 2

D(x
i

, x

j

, Q

2

i

, Q

2

j

)
nf

D(x
i

, Q

2

i

)D(x
j

, Q

2

j

)
, (25)

is the ratio of
2

GPD obtained from non-factorized and factorized terms at the scale Q

2

1

, Q

2

2

. After

carrying out integration over �2 we obtain the expression for �e↵ in terms of R

pQCD

, K, B

el

and

B

in

. For simplicity we will write it only for the case of kinematics under considerations where the

K term enters only for the partons with smaller x’s.

VII. �e↵ FOR PRODUCTION OF THE HEAVY QUARK PAIRS

.

Transverse momentum dependence of K factor for 2GPD for regimes of 
small and large x in kinematics of chapter 2 (Q20 = 0.5 GeV2 ) 

12
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We can now return to the analysis of the process of production of two charmed pairs. We

consider the symmetric kinematics, i.e. x

1

⇠ x

2

; x
3

⇠ x

4

.

In this case we can neglect terms proportional to K

34

since it corresponds to a negligible Regge

mechanism contributions at x

3

, x

4

⇠ 0.01 ÷ 0.1, and in particular neglect S

12

–K

34

interference

terms). Then we have

1

�

e↵

=
Z

d

2�

(2⇡)2
((exp(�B

1el

�2) + K

12

exp(�B

1in

�2) + S

12

)(exp(�B

3el

�2) + S

34

) � S

12

S

34

), (26)

Carrying out the integration we obtain for the full rescaling of �e↵ including all three mechanisms

discussed above:

R

tot

= R

pQCD

+ R

soft

, (27)

where R

pQCD

is the cross section enhancement due to 1 ⌦ 2 mechanism, i.e. proportional to

S

34

exp(�B

1el

�2),see section 3, while

R

soft

= K

12

(
B

1el

+ B

3el

B

3el

+ B

1in

+ R

pQCD

B

1el

B

1in

), (28)

is the enhancement due to nonperturbative correlations and interference of nonperturbative and

perturbative contributions.

Note that the main sources of large R

tot

are the presence of the pQCD enhancement – 1 ⌦

2 for two partons with larger x and nonperturbative enhancement for smaller x’s. The latter

enhancement is amplified by the fact that the only �2 dependence in this case due to exp(�B

in

�2),

whose slope is almost three times smaller than that of the mean field term, leading to the major

enhancement of the corresponding contribution, compensating relatively small K. (The smallness

of K is connected with a rapid decrease of the e↵ect of non-perturbative correlations with the

increase of Q

2.) Thus the enhancement we obtain is essentially due to asymmetric (between upper

and lower parts of diagram Fig. 2) kinematics of two pairs of x’s.

Numerically , B

1el

+ B

2el

⇠ 8.2 GeV�2, B

1el

/B

1in

⇠ 2.8. Thus for example for p

t

= 4GeV

altogether the Regge type contribution to R is ⇠ 0.3,R
pQCD

⇠ 0.7 For Q

2

0

= 1GeV

2 we find the

Regge contribution to R to be larger–⇠ 0.4, while R

pQCD

⇠ 0.4, As a result for both choices of the

initial conditions we obtain R ⇠ 1.8 � 2., leading to

�

e↵

⇠ 20 � 22mb (29)

Note that numerically variation of the values of R

pQCD

, with a choice of the starting point of the

Q

2 evolution is practically completely compensated by the variation of the soft non-factorizable

contribution.

Soft contribution is strongly enhanced 
due to much smaller t-slope: Binel << Bel.
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Note that eq.29 does not include additional uncertainties in the Reggeon calculation. For

example, uncertainty in the ratio of inelastic and elastic di↵raction of order 25% will lead to

19� 23 mb in eq.29 and so on. There is a similar uncertainty due to the input t-dependence of the

gluon GPDs.

The same calculation for the production of two bottom and two charm pairs in the LHCb

kinematics [23, 24] also gives R ⇠ 1.9 � 2. In this case �

e↵ mean field

⇠ 38mb, and we find �e↵ ⇠ 19

mb, in a good agreement with the LHCb data.

We show di↵erent contributions to �e↵ enhancement as a function of the transverse momentum

of D meson p

t

for 3.5 TeV and 6.5 TeV runs in figures 6 and 7.
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0.0

0.5

1.0

1.5

pt GeV

R
1/σeff Enhancement, Q20=0.5 GeV2

R

RpQCD

Rsoft

4 6 8 10 12
0.0

0.5

1.0

1.5

pt GeV

R

1/σeff Enhancement, Q20=1 GeV2

FIG. 6: R

tot

and contributions to R

tot

due to R

pQCD

, R

soft

as a function of the D meson transverse

momentum p

t

for 3.5x3.5 TeV run

FIG. 7: R

tot

and contributions to R

tot

due to R

pQCD

, R

soft

as a function of the D meson transverse

momentum p

t

for 6.5x6.5 TeV run

We see that the R

pQCD

slowly decreases with energy, but this is compensated with increase of

p
s = 7 TeV

p
s = 7 TeV
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R

soft

, whose relative contribution also increases with the increase of energy.

The corresponding �e↵ for two LHC runs are depicted in Figs. 8.
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FIG. 8: �e↵ as a function of the D meson transverse momentum p

t

for Q

2
0 = 0.5, 1 GeV2 and for 3.5x3.5

TeV and 6.5x6.5 TeV runs

We see that the �e↵ increases by less than 1 mb for small p

t

when we move from 3.5 to 6.5 TeV,

i.e. it e↵ectively remains constant with the increase of energy, due to increase of soft correlations

contribution compensating the decrease of pQCD contribution and increase of mean field �

MF

e↵

. In

fact of course such small changes are beyond the accuracy of our model, and we can only conclude

that �e↵ are approximately constant in this interval of energies for given transverse momenta p

t

.

We obtain very similar results for the production of two pairs of bb̄ (Fig. 9). Note that in our

approach the same �e↵ are expected for production of two ⌥ and ⌥bb̄, cf discussion in section 2 of

the case of charm production.

VIII. CONCLUSIONS

We have demonstrated that the rate of DPS of the production of two pairs of D mesons in the pp

collisions in the forward kinematics studied by the LHCb can be explained by taking into account

two types of correlations in the nucleon double GPD - the pQCD mechanism of [4, 7, 9, 10] which

allowed previously to describe the rate of DPS at the central rapidities and new nonperturbative

correlation mechanism specific for small x which is related to the phenomenon of the inelastic

di↵raction.

Account for two correlation mechanisms significantly reduces sensitivity of the results to the

starting point of the QCD evolution, both for forward and for central kinematics.

Numerical find: soft mechanism reduces sensitivity to Q0

p
s = 7 TeV

p
s = 13 TeV
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R

soft

, whose relative contribution also increases with the increase of energy.

The corresponding �e↵ for two LHC runs are depicted in Figs. 8.

FIG. 8: �e↵ as a function of the D meson transverse momentum p

t

for Q

2
0 = 0.5, 1 GeV2 and for 3.5x3.5

TeV and 6.5x6.5 TeV runs

We see that the �e↵ increases by less than 1 mb for small p

t

when we move from 3.5 to 6.5 TeV,

i.e. it e↵ectively remains constant with the increase of energy, due to increase of soft correlations

contribution compensating the decrease of pQCD contribution and increase of mean field �

MF

e↵

. In

fact of course such small changes are beyond the accuracy of our model, and we can only conclude

that �e↵ are approximately constant in this interval of energies for given transverse momenta p

t

.

We obtain very similar results for the production of two pairs of bb̄ (Fig. 9). Note that in our

approach the same �e↵ are expected for production of two ⌥ and ⌥bb̄, cf discussion in section 2 of

the case of charm production.

VIII. CONCLUSIONS

We have demonstrated that the rate of DPS of the production of two pairs of D mesons in the pp

collisions in the forward kinematics studied by the LHCb can be explained by taking into account

two types of correlations in the nucleon double GPD - the pQCD mechanism of [4, 7, 9, 10] which

allowed previously to describe the rate of DPS at the central rapidities and new nonperturbative

correlation mechanism specific for small x which is related to the phenomenon of the inelastic

di↵raction.

Account for two correlation mechanisms significantly reduces sensitivity of the results to the

starting point of the QCD evolution, both for forward and for central kinematics.
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FIG. 9: �e↵ as a function of the B meson transverse momentum p

t

for Q

2
0 = 0.5, 1 GeV2 and for 3.5x3.5

TeV and 6.5x6.5 TeV runs

Though the estimates of the non-perturbative correlations are only semiquantitative, we natu-

rally obtain �

e↵

⇠ 20 � 22 mb for the D meson pair production (see Figs. 7,8) which is in a good

agreement with experimental data for 3.6 and 4 TeV runs (see Fig.10 in [24]). We obtain similar

results for other charm DPS production processes (2 J/Psi, J/ and DD̄ pair), and this is indeed

observed in experiment [23] in the forward kinematics (within experimental accuracy). For the

DPS production of the bottom quarks we find (see Fig.9) �e↵ ⇠ 21-23 mb which is nearly a factor

of two smaller than the mean field estimate of �e↵ =38 mb. Thus we observe that combining pQCD

correlation mechanism and the Regge inspired model for initial conditions we find approximately

constant �e↵ of order 20-22 mb for the LHCb kinematics.

Our calculations of �e↵ were performed both for the 3.5 ⇥ 3.5 TeV 6.5 ⇥ 6.5 TeV runs. (The

corresponding di↵erences with 4 and 7 TeV runs respectively are negligible). We obtain practically

the same values of �e↵ since the decrease of R

pQCD

is compensated by increase if R

soft

. The actual

di↵erence is of order 1mb, slightly increasing to 2 mb (�e↵ slightly decreases with increase of energy,

but this change may be artifact of our model assumptions, i.e. it is obviously beyond the accuracy

of our model).

Clearly, the role of soft correlations increases with the decrease of typical Bjorken x in the

process. The same is true for transverse scale where the soft correlations start to be relevant, we

see that it increases with energy. On the other hand the changes in the scale of pQCD and soft

correlations tend to compensate each other with the increase of energy. This means that from the

theoretical point of view it will be extremely helpful to carry the measurement of �e↵ for new 6.5

TeV run at LHCb, as well as to measure dependence of �e↵ on rapidity of the forward quark pair.

the same for B-mesons
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Central kinematics:

Effect of soft term for central kinematicsCentral kinematics:

Soft correlations are negligible for DPS regime (typical 
pT> 10-20 GeV), but maybe important for UE (several GeV scale). 
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Conclusions

MPI model with pQCD induced correlations  and Q2 ~ 1 GeV2 
starting DGLAP evolution scale and soft small x correlations agrees 
well with the data in most cases (notable exception is double J/psi 
production and first steps have been done to implement it 
numerically in MC generators. 

Open questions

How unknown mechanism of pT cutoff affects σeff at pT of 
few GeV.

NLO effects for 3 to 4


