Deutsches Elektronen-Synchrotron (DESY), Hamburg, NIKHEF, Amsterdam

Double parton scattering session: experimental introduction

Jonathan Gaunt, Paolo Gunnellini

MPI@LHC 2016 San Cristobal de las Chiapas November 2016, Mexico

Introduction and outlook

Many interesting experimental talks:

- ATLAS results on double parton scattering
 → Ewelina Lobodzinska
- DPS measurements at the CMS experiment
 - \rightarrow Ramandeep Kumar
- Measurement of four-jet production at CMS
 - → Paolo Gunnellini
- Study of DPS processes at LHCb
 → An Liupan

N.B. 17 + 3 min. for each talk!

Prospects for the future:

- DPS energy dependence
- New sensitive channels?
- New sensitive observables?
- New phase space?

N.B. Very personal and (CMS-) biased view!

Paolo Gunnellini MPI@LHC2016 November 2016

$$\sigma_{AB}^{DPS} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$$

Internal structure of the proton DPS background for any physics channel

ightarrow Which channels can be used to look for DPS signals?

Paolo Gunnellini MPI@LHC2016 November 2016

Is this not a clear evidence of DPS?

$$\begin{split} R_{\mathrm{D^{+}}}^{\Upsilon(2\mathrm{S})/\Upsilon(1\mathrm{S})} &= \mathscr{B}_{2/1} \times \frac{\sigma_{\sqrt{s}=\mathrm{TTeV}}^{\Upsilon(2\mathrm{S})\mathrm{D^{+}}}}{\sigma_{\sqrt{s}=\mathrm{TTeV}}^{\Upsilon(1\mathrm{S})\mathrm{D^{+}}}} &= (22\pm7)\%\,, \\ R_{\mathrm{D^{+}}}^{\Upsilon(2\mathrm{S})/\Upsilon(1\mathrm{S})} &= \mathscr{B}_{2/1} \times \frac{\sigma_{\sqrt{s}=\mathrm{STeV}}^{\Upsilon(2\mathrm{S})\mathrm{D^{+}}}}{\sigma_{\sqrt{s}=\mathrm{STeV}}^{\Upsilon(1\mathrm{S})\mathrm{D^{+}}}} &= (22\pm6)\%\,, \\ \mathbf{LHCb} \end{split}$$

ATLAS - CMS: DPS fraction 5-8%

 \rightarrow Diff. cross sections of DPS-sensitive observables

LHCb: DPS fraction 60 - 80%

ightarrow Total production cross section for sensitive channels

Is this not a clear evidence of DPS?

More results (and new final states) continue to appear

Similar amount of DPS contribution as in W+dijet (\sim 7-9%)!

Collection of several measurements (jet, charm and vector-boson sector) allows studies on channel-dependence

Experimental strategy for DPS measurements (I)

- Investigation of sensitive channels (same-sign WW, J/ ψ +D, Λ)
- Analysis cuts which increase DPS sensitivity

Currently, measurements scan different (and complementary) regions of phase space

Experimental strategy for DPS measurements (II)

1st step

Corrected distributions DPS-sensitive variables

2nd step

Data interpretation and unambiguous definition of signal and background templates

3rd step

Extraction of the DPS fraction and study of the process dependence

Compare the data to your own favourite predictions!

4th (future) step: possibility to measure sensitive corners of phase space

Paolo Gunnellini MPI@LHC2016 November 2016

Role of the quantity σ_{eff}

- Is the value for $\sigma_{\it eff}$ a useful input?
- How can one reduce the exp. unc.?
- Should one try also a global extraction?

Combined extraction in different channels/energies?

Paolo Gunnellini MPI@LHC2016 November 2016 8

LHCb results

Focus on associated charm production with some differential cross sections available

$$ightarrow$$
 double ${
m J}/\psi$

- \rightarrow Z + charm mesons
- \rightarrow Y + charm mesons

From Vanya last year's MPI@LHC: "10% of "hard" events has additional charm!"

	measured	MCFM massless	MCFM massive	DPS
$Z + D^0$	$2.50 \pm 1.12 \pm 0.22$	$0.85^{+0.12}_{-0.07}~^{+0.11}_{-0.17}\pm0.05$	$0.64^{+0.01}_{-0.01}~^{+0.08}_{-0.13}\pm0.04$	$3.28^{+0.68}_{-0.58}$
$Z + D^+$	$0.44 \pm 0.23 \pm 0.03$	$0.37^{+0.05}_{-0.03}~^{+0.05}_{-0.07}\pm0.03$	$0.28^{+0.01}_{-0.01}~^{+0.04}_{-0.06}\pm0.02$	$1.29^{+0.27}_{-0.23}$

- \rightarrow Why does LHCb use the CDF result for $\sigma_{\it eff}$?
- \rightarrow I had some rumours that some results at 13 TeV will be presented. :)

Status of DPS analysis in Run II

 Not much more available at 13 TeV in terms of DPS understanding for the time being!

POSSIBLE (EXPERIMENTAL) REASONS:

- Poor low-PU runs ($\sim 2~{\rm pb^{-1}}$ in Runl was 36 ${\rm pb^{-1}}$)
- Jets (especially) at low p_T not very well understood
- People are generally happy with evaluation of DPS cross sections for background estimation through the pocket formula \rightarrow little contamination, large uncertainties for $\sigma_{\it eff}$ not an issue
- Missing person power

HOW TO MAKE DPS ANALYSES (EVEN MORE) ATTRACTIVE?

- New ideas and new channels to be looked for
- Development of new theoretical approaches
- Possibility of using more sophisticated models to be tested in specific channels
- Going further: triple parton scattering
- more ideas to be collected during this week's discussions!

П

HOW TO MAKE DPS ANALYSES (EVEN MORE) ATTRACTIVE?

- New ideas and new channels to be looked for
- Development of new theoretical approaches
- Possibility of using more sophisticated models to be tested in specific channels
- Going further: triple parton scattering
- more ideas to be collected during this week's discussions!

We hope to have a nice discussion during the DPS session!