DPS © MPI 2016

DPD sum rules in QCD

December 1, 2016

P. Plößl ${ }^{1} \quad$ A. Schäfer ${ }^{1} \quad$ M. Diehl ${ }^{2}$

${ }^{1}$ Institut für theoretische Physik Universität Regensburg, 93053 Regensburg
${ }^{2}$ Deutsches Elektronen-Synchrotron DESY 22603 Hamburg

Outline

Introduction

Preliminaries
Definitions
$\mathcal{O}\left(\alpha_{s}\right)$ example
Proof for bare quantities

Extension of the proof to renormalised quantities
Renormalised PDFs and DPDs
Number Sum Rule
Momentum Sum Rule

QCD Evolution
dDGLAP Equation
Consistency Checks
Summary

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- motivated by a probabilistic interpretation of the parton model

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

$$
\sum_{j_{1}, j_{2}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} \frac{x_{1} x_{2}}{M-x_{1}} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=M=1
$$

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

$$
\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(\frac{F^{j_{1} j_{1, v}}\left(x_{1}, x_{2}\right)}{N_{j_{1, v}}-1}-\frac{F^{\overline{j_{1}} j_{1, v}}\left(x_{1}, x_{2}\right)}{N_{j_{1, v}}+1}\right)=N_{j_{1, v}}
$$

Introduction

Number Sum Rule

Momentum Sum Rule $\quad \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)$

- consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$
\sum_{j_{2}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1, v} j_{2}}\left(x_{1}, x_{2}\right)
$$

Introduction

$\begin{array}{ll}\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\ \text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)\end{array}$

- consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$
\sum_{j_{2}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1, v} j_{2}}\left(x_{1}, x_{2}\right)=N_{j_{1, v}}-x_{j_{1, v}} \checkmark
$$

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2}, v}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \bar{j}_{2}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$
\sum_{j_{2}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1, v} j_{2}}\left(x_{1}, x_{2}\right)=N_{j_{1, v}}-x_{j_{1, v}} \checkmark
$$

- put constraints on the DPDs and can therefore be used to refine DPD-models

Introduction

$$
\begin{array}{ll}
\text { Number Sum Rule } & \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right) \\
\text { Momentum Sum Rule } & \sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(M-x_{1}\right) f^{j_{1}}\left(x_{1}\right)
\end{array}
$$

- consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$
\sum_{j_{2}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F^{j_{1, v} j_{2}}\left(x_{1}, x_{2}\right)=N_{j_{1, v}}-x_{j_{1, v}} \checkmark
$$

- put constraints on the DPDs and can therefore be used to refine DPD-models
- prove that these sum rules are fulfilled in QCD

$$
\begin{aligned}
f^{j_{1}}\left(x_{1}, \boldsymbol{k}_{1}\right)= & \int \frac{\mathrm{d} z_{1}^{-}}{2 \pi} \mathrm{e}^{i x_{1} z_{1}^{-} p^{+}} \int \frac{\mathrm{d}^{2} \boldsymbol{z}_{1}^{-}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{z}_{1} \boldsymbol{k}_{1}}\langle p| \bar{q}_{j_{1}}\left(-\frac{z_{1}}{2}\right) \Gamma_{a} q_{j_{1}}\left(\frac{z_{1}}{2}\right)|p\rangle \\
F^{j_{1} j_{2}}\left(x_{1}, x_{2}, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{\Delta}\right)= & {\left[\prod_{i=1}^{2} \int \frac{\mathrm{~d} z_{i}^{-}}{2 \pi} \mathrm{e}^{i x_{i} z_{i}^{-} p^{+}} \int \frac{\mathrm{d}^{2} \boldsymbol{z}_{i}^{-}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{z}_{i} \boldsymbol{k}_{i}}\right]\left[2 p^{+} \int \frac{\mathrm{d} y_{1}^{-}}{2 \pi} \frac{\mathrm{~d}^{2} \boldsymbol{y}_{1}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{y}_{1} \boldsymbol{\Delta}}\right] } \\
& \times\langle p| \bar{q}_{j_{2}}\left(-\frac{z_{2}}{2}\right) \Gamma_{a} q_{j_{2}}\left(\frac{z_{2}}{2}\right) \bar{q}_{j_{1}}\left(y_{1}-\frac{z_{1}}{2}\right) \Gamma_{a} q_{j_{1}}\left(y_{1}+\frac{z_{2}}{2}\right)|p\rangle
\end{aligned}
$$

$$
\begin{aligned}
f^{j_{1}}\left(x_{1}, \boldsymbol{k}_{1}\right)= & \int \frac{\mathrm{d} z_{1}^{-}}{2 \pi} \mathrm{e}^{i x_{1} z_{1}^{-} p^{+}} \int \frac{\mathrm{d}^{2} \boldsymbol{z}_{1}^{-}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{z}_{1} \boldsymbol{k}_{1}}\langle p| \bar{q}_{j_{1}}\left(-\frac{z_{1}}{2}\right) \Gamma_{a} q_{j_{1}}\left(\frac{z_{1}}{2}\right)|p\rangle \\
F^{j_{1} j_{2}}\left(x_{1}, x_{2}, \boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{\Delta}\right)= & {\left[\prod_{i=1}^{2} \int \frac{\mathrm{~d} z_{i}^{-}}{2 \pi} \mathrm{e}^{i x_{i} z_{i}^{-} p^{+}} \int \frac{\mathrm{d}^{2} \boldsymbol{z}_{i}^{-}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{z}_{i} \boldsymbol{k}_{i}}\right]\left[2 p^{+} \int \frac{\mathrm{d} y_{1}^{-}}{2 \pi} \frac{\mathrm{~d}^{2} \boldsymbol{y}_{1}}{(2 \pi)^{2}} \mathrm{e}^{i \boldsymbol{y}_{1} \boldsymbol{\Delta}}\right] } \\
& \times\langle p| \bar{q}_{j_{2}}\left(-\frac{z_{2}}{2}\right) \Gamma_{a} q_{j_{2}}\left(\frac{z_{2}}{2}\right) \bar{q}_{j_{1}}\left(y_{1}-\frac{z_{1}}{2}\right) \Gamma_{a} q_{j_{1}}\left(y_{1}+\frac{z_{2}}{2}\right)|p\rangle
\end{aligned}
$$

- can be interpreted in terms of Feynman diagrams, e.g.

$$
f^{j_{i}}\left(x_{1}, \boldsymbol{k}_{1}\right)=\int \frac{\mathrm{d} z_{1}^{-}}{(2 \pi)^{4}}
$$

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

Contributing Feynman diagrams

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g d}$

Contributing Feynman diagrams

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g d}$

Contributing Feynman diagrams

$$
f^{g}
$$

$F^{g u}$

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g d}$

Contributing Feynman diagrams

$F^{g u}$
$F^{g \bar{d}}$

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g d}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

$\mathcal{O}\left(\alpha_{s}\right)$ example

Consider a toy-model of a meson consisting of an u-quark and \bar{d}-antiquark, splitting into its constituents via a pointlike coupling. For $j_{1}=g$ only the following PDFs und DPDs can be realized to $\mathcal{O}\left(\alpha_{s}\right): f^{g}, F^{g u}, F^{g \bar{d}}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

Use light-front perturbation theory to show the equivalence between PDF and DPD

Steps towards a proof for bare quantities

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

Steps towards a proof for bare quantities

$$
\begin{gathered}
f_{B}^{j_{1}}\left(x_{1}\right)=\sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
\times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F_{B}^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)= \\
\sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(x_{1} p^{+}\right)^{n_{1}} 2 p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{\left.(2 \pi)^{D-1} p^{+}\right)}\right. \\
\\
\times\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1} j_{2}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{gathered}
$$

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered
cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016
Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered
cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016
Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$
2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}} \stackrel{?}{=} \Phi_{P D F_{t, c, o}}^{j_{1}}
$$

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered
cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016
Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$
2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}} \stackrel{?}{=} \Phi_{P D F_{t, c, o}}^{j_{1}}
$$

(obtained from integrating a $j_{1} j_{2}$-DPD over the momentum fraction of parton 2 and comparing the result to a j_{1}-PDF)

Steps towards a proof for bare quantities

- after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^{+}-value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered
cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016
Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$
2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}}=\Phi_{P D F_{t, c, o}}^{j_{1}}
$$

(obtained from integrating a $j_{1} j_{2}$-DPD over the momentum fraction of parton 2 and comparing the result to a j_{1}-PDF)
Careful ananlysis of the LCPT expressions $\Phi_{D P}^{j_{1}, j_{2}}$, and $\Phi_{P D F_{t, c, o}}^{j_{1}}$ shows that this is indeed the case

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
$$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
& \sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
&\left(N\left(j_{2}\right)_{t, c, o}-N\left(\bar{j}_{2}\right)_{t, c, o}\right)=\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$ Assuming that there are $N_{j_{2, v}} j_{2}$-valence quarks inside the hadron under consideration plus an arbitray number of $j_{2} \overline{j_{2}}$-pairs one can determine $N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}$ in terms of j_{1} :

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\bar{j}_{2}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$ Assuming that there are $N_{j_{2, v}} j_{2}$-valence quarks inside the hadron under consideration plus an arbitray number of $j_{2} \overline{j_{2}}$-pairs one can determine $N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}$ in terms of j_{1} :

$$
j_{1} \neq j_{2}, \overline{j_{2}} \quad\left(N_{j_{2, v}}+x\right)-x=N_{j_{2, v}}
$$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\bar{j}_{2}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$ Assuming that there are $N_{j_{2, v}} j_{2}$-valence quarks inside the hadron under consideration plus an arbitray number of $j_{2} \overline{j_{2}}$-pairs one can determine $N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}$ in terms of j_{1} :

$$
\begin{aligned}
j_{1} & \neq j_{2}, \overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-x & =N_{j_{2, v}} \\
j_{1} & =\overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-(x-1) & =N_{j_{2, v}}+1
\end{aligned}
$$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\bar{j}_{2}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$ Assuming that there are $N_{j_{2, v}} j_{2}$-valence quarks inside the hadron under consideration plus an arbitray number of $j_{2} \overline{j_{2}}$-pairs one can determine $N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}$ in terms of j_{1} :

$$
\begin{aligned}
j_{1} & \neq j_{2}, \overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-x & =N_{j_{2, v}} \\
j_{1} & =\overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-(x-1) & =N_{j_{2, v}}+1 \\
j_{1} & =j_{2} & \left(N_{j_{2, v}}+x-1\right)-x & =N_{j_{2, v}}-1
\end{aligned}
$$

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$
\begin{aligned}
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \\
\left(N\left(j_{2}\right)_{t, c, o}-N\left(\bar{j}_{2}\right)_{t, c, o}\right) & =\left(N_{j_{2, v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
\end{aligned}
$$

where $N\left(j_{2}\right)_{t, c, o}$ is the number of j_{2}-quarks running across the final state cut in $\Phi_{P D F_{t, c, o}}^{j_{1}}$ Assuming that there are $N_{j_{2, v}} j_{2}$-valence quarks inside the hadron under consideration plus an arbitray number of $j_{2} \overline{j_{2}}$-pairs one can determine $N\left(j_{2}\right)_{t, c, o}-N\left(\overline{j_{2}}\right)_{t, c, o}$ in terms of j_{1} :

$$
\begin{aligned}
j_{1} & \neq j_{2}, \overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-x & =N_{j_{2, v}} \\
j_{1} & =\overline{j_{2}} & \left(N_{j_{2, v}}+x\right)-(x-1) & =N_{j_{2, v}}+1 \\
j_{1} & =j_{2} & \left(N_{j_{2, v}}+x-1\right)-x & =N_{j_{2, v}}-1
\end{aligned}
$$

$$
=N_{j_{2}, v}+\delta_{j_{1}, \overline{j_{2}}-\delta_{j_{1}, j_{2}}}
$$

Momentum Sum Rule

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

Momentum Sum Rule

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$
\begin{aligned}
& \sum_{l} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
= & \left(1-x_{1}\right) \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

where

$$
\int \mathrm{D}_{a}^{b}\left[x_{i}\right]=\prod_{i=a}^{b} \int_{0}^{1} \mathrm{~d} x_{i} p^{+} \quad \int \mathrm{D}_{a}^{b}\left[\boldsymbol{k}_{i}\right]=\prod_{i=a}^{b} \int \frac{\mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}},
$$

Momentum Sum Rule

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$
\begin{aligned}
& \sum_{l} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
= & \left(1-x_{1}\right) \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

w.l.o.g. performing the x_{2}-integration on both sides, one finds the follwing

Momentum Sum Rule

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$
\begin{aligned}
& \sum_{l} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
= & \left(1-x_{1}\right) \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

w.l.o.g. performing the x_{2}-integration on both sides, one finds the follwing

$$
\begin{aligned}
& \left.\int \mathrm{D}_{3}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \underbrace{\left(1-x_{1}-\sum_{i=3}^{M(c)} x_{i}+\sum_{j=3}^{M(c)} x_{j}\right)}_{\left(1-x_{1}\right)} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\})\right|_{x_{2}=x_{2,0}} \\
= & \left.\left(1-x_{1}\right) \int \mathrm{D}_{3}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\})\right|_{x_{2}=x_{2,0}}
\end{aligned}
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}} \int_{x_{1}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}} Z_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) f_{B}^{i_{1}}\left(z_{1}\right)
$$

with renormalisation factors $Z_{i_{1} \rightarrow j_{1}}$, which in MS-renormalisation have the following expansion in α_{s}

$$
Z_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)=\delta\left(1-x_{1}\right) \delta_{i_{1}, j_{1}}+\alpha_{s} \frac{Z_{i_{1} \rightarrow j_{1} ; 11}}{\varepsilon}+\alpha_{s}^{2}\left(\frac{Z_{i_{1} \rightarrow j_{1} ; 22}}{\varepsilon^{2}}+\frac{Z_{i_{1} \rightarrow j_{1} ; 21}}{\varepsilon}\right)+\ldots
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes f_{B}^{i_{1}}
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes f_{B}^{i_{1}}
$$

$$
\begin{aligned}
F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)= & \sum_{i_{1}, i_{2}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{~d} z_{1}}{z_{1}} \int_{x_{2}}^{1-z_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}} Z_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) Z_{i_{2} \rightarrow j_{2}}\left(\frac{x_{2}}{z_{2}}\right) F_{B}^{i_{1} i_{2}}\left(z_{1}, z_{2}\right) \\
& +\sum_{i_{1}} \int_{x_{1}+x_{2}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}^{2}} Z_{i_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{2}}\right) f_{B}^{i_{1}}\left(z_{1}\right)
\end{aligned}
$$

with the new renormalisation factors $Z_{i_{1} \rightarrow j_{1} j_{2}}$, which are in MS-renormalisation given by

$$
Z_{i_{1} \rightarrow j_{1} j_{2}}=\alpha_{s} \frac{Z_{i_{1} \rightarrow j_{1} j_{2} ; 11}}{\varepsilon}+\alpha_{s}^{2}\left(\frac{Z_{i_{1} \rightarrow j_{1} j_{2} ; 22}}{\varepsilon^{2}}+\frac{Z_{i_{1} \rightarrow j_{1} j_{2} ; 21}}{\varepsilon^{2}}\right)+\ldots
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes f_{B}^{i_{1}}
$$

$$
F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{2} \rightarrow j_{2}} \otimes F_{B}^{i_{1} i_{2}}+Z_{i_{1} \rightarrow j_{1} j_{2}} \otimes f_{B}^{i_{1}}
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes f_{B}^{i_{1}}
$$

$$
F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{2} \rightarrow j_{2}} \otimes F_{B}^{i_{1} i_{2}}+Z_{i_{1} \rightarrow j_{1} j_{2}} \otimes f_{B}^{i_{1}}
$$

Finally we define a inverse PDF renormalisation factor $Z_{i_{1}^{\prime} \rightarrow i_{1}}^{-1}$, obeying

$$
\sum_{i_{1}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} Z_{i_{1}^{\prime}, i_{1}}^{-1}\left(\frac{x_{1}}{u_{1}}\right) Z_{i_{1}, j_{1}}\left(x_{1}\right)=\delta_{i_{1}^{\prime}, j_{1}} \delta\left(1-x_{1}\right) .
$$

Renormalised PDFs and DPDs

$$
f^{j_{1}}\left(x_{1}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes f_{B}^{i_{1}}
$$

$$
F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=Z_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{2} \rightarrow j_{2}} \otimes F_{B}^{i_{1} i_{2}}+Z_{i_{1} \rightarrow j_{1} j_{2}} \otimes f_{B}^{i_{1}}
$$

$$
\begin{aligned}
Z_{i_{1}^{\prime}, i_{1}}^{-1} \otimes Z_{i_{1}, j_{1}} & =\delta_{i_{1}^{\prime}, j_{1}} \delta\left(1-x_{1}\right) \\
f_{B}^{i_{1}} & =Z_{i_{1}^{\prime}, i_{1}}^{-1} \otimes f^{i_{1}^{\prime}}
\end{aligned}
$$

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2}, v}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2}, v}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

where $R^{\prime}\left(x_{1}, u_{1}\right)$ is given by

$$
\begin{aligned}
& R^{\prime}\left(x_{1}, u_{1}\right)= \\
& \sum_{i_{1}} \int_{x_{1}}^{u_{1}} \frac{\mathrm{~d} z_{1}}{z_{1}} Z_{i_{1}^{\prime} \rightarrow i_{1}}^{-1}\left(\frac{x_{1}}{u_{1}}\right)[\\
& \\
& \\
& \\
& \\
& \left.\left.\quad+\int_{0}^{1-\frac{x_{1}}{z_{1}}} \mathrm{~d} u_{2}\left(Z_{i_{1} \rightarrow j_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}\right)-\delta\left(1-\frac{x_{1}}{z_{1}}\right) \delta_{i_{1}, j_{1}}\right)\left(\delta_{i_{1}, \overline{j_{2}}}-\delta_{i_{1}, j_{2}}-\delta_{j_{1}, \overline{j_{2}}}+\delta_{j_{1}, j_{2}}\right)-Z_{i_{1} \rightarrow j_{1} \overline{j_{2}}}\left(\frac{x_{1}}{z_{1}}, u_{2}\right)\right)\right]
\end{aligned}
$$

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

- Ihs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

- Ihs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- thus the same holds for the rhs, i.e. all poles in ε in R^{\prime} have to cancel

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

- Ihs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- thus the same holds for the rhs, i.e. all poles in ε in R^{\prime} have to cancel
- as we subtracted the treelevel term from $Z_{i_{1} \rightarrow j_{1}}$ in R^{\prime} it does not contain any terms that are finite for $\varepsilon=0$

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

- Ihs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- thus the same holds for the rhs, i.e. all poles in ε in R^{\prime} have to cancel
- as we subtracted the treelevel term from $Z_{i_{1} \rightarrow j_{1}}$ in R^{\prime} it does not contain any terms that are finite for $\varepsilon=0$
- i.e. $R^{\prime}=0$, such that the number sum rule holds for MS-renormalised quantities (can easily be extended to $\overline{M S}$-renormalisation)

Number Sum Rule

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F^{j_{1} j_{2, v}}\left(x_{1}, x_{2}\right)-\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R^{\prime}\left(x_{1}, u_{1}\right)
$$

- Ihs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- thus the same holds for the rhs, i.e. all poles in ε in R^{\prime} have to cancel
- as we subtracted the treelevel term from $Z_{i_{1} \rightarrow j_{1}}$ in R^{\prime} it does not contain any terms that are finite for $\varepsilon=0$
- i.e. $R^{\prime}=0$, such that the number sum rule holds for $M S$-renormalised quantities (can easily be extended to $\overline{\mathrm{MS}}$-renormalisation)

As we now know that $R^{\prime}=0$ we can derive the following relation between the renormalisation factors for the inhomogeneous term and the regular PDF renormalisation factors

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(Z_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)-Z_{i_{1} \rightarrow j_{1}} \overline{j_{2}}\left(x_{1}, x_{2}\right)\right)=\left(\delta_{i_{1}, j_{2}}-\delta_{i_{1}, \overline{j_{2}}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) Z_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

Momentum Sum Rule

Repeating the same for the momentum sum rule one finds

$$
\sum_{j_{2}} \int_{0}^{1-x 1} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)-\left(1-x_{1}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R\left(x_{1}, u_{1}\right)
$$

Momentum Sum Rule

Repeating the same for the momentum sum rule one finds

$$
\sum_{j_{2}} \int_{0}^{1-x 1} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)-\left(1-x_{1}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R\left(x_{1}, u_{1}\right)
$$

where $R\left(x_{1}, u_{1}\right)$ is given by

$$
\begin{aligned}
R\left(x_{1}, u_{1}\right)=\sum_{i_{1}} \int_{x_{1}}^{u_{1}} \frac{\mathrm{~d} z_{1}}{z_{1}} Z_{i_{1}^{\prime} \rightarrow i_{1}}^{-1}\left(\frac{x_{1}}{u_{1}}\right) & {\left[\left(Z_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right)-\delta\left(1-\frac{x_{1}}{z_{1}}\right) \delta_{i_{1}, j_{1}}\right)\left(x_{1}-z_{1}\right)\right.} \\
& \left.+z_{1} \sum_{j_{2}} \int_{0}^{1-\frac{x_{1}}{z_{1}}} \mathrm{~d} u_{2} u_{2} Z_{i_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}, u_{2}\right)\right]
\end{aligned}
$$

Momentum Sum Rule

Repeating the same for the momentum sum rule one finds

$$
\sum_{j_{2}} \int_{0}^{1-x 1} \mathrm{~d} x_{2} x_{2} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)-\left(1-x_{1}\right) f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}^{\prime}} \int_{x_{1}}^{1} \frac{\mathrm{~d} u_{1}}{u_{1}} f^{i_{1}^{\prime}}\left(u_{1}\right) R\left(x_{1}, u_{1}\right)
$$

Using the same reasoning as in the case of the number sum rule one can thus conclude, that also the momentum sum rule holds for renormalised quantities. The constraint, that $R=0$ yields the follwing relation between $Z_{i_{1} \rightarrow j_{1} j_{2}}$ and $Z_{i_{1} \rightarrow j_{1}}$

$$
\sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} Z_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) Z_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}\left(x_{1}\right)=\sum_{i_{1}} \int_{x_{1}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}} P_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) f^{i_{1}}\left(z_{1}\right)
$$

where $P_{i_{1} \rightarrow j_{1}}$ are the well known DGLAP splitting kernels.

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}=P_{i_{1} \rightarrow j_{1}} \otimes f^{i_{1}}
$$

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}=P_{i_{1} \rightarrow j_{1}} \otimes f^{i_{1}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} F^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\sum_{i_{1}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{~d} z_{1}}{z_{1}} P_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) F^{i_{1} j_{2}}\left(z_{1}, x_{2}\right) \\
& +\sum_{i_{2}} \int_{x_{2}}^{1-x_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}} P_{i_{2} \rightarrow j_{2}}\left(\frac{x_{2}}{z_{2}}\right) F^{j_{1} i_{2}}\left(x_{1}, z_{2}\right)+\sum_{i_{1}} \int_{x_{1}+x_{2}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}^{2}} P_{i_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{1}}\right) f^{i_{1}}\left(z_{1}\right)
\end{aligned}
$$

where the $P_{i_{1} \rightarrow j_{1} j_{2}}$ are $1 \rightarrow 2$ splitting kernels about which not much is known a priori

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}=P_{i_{1} \rightarrow j_{1}} \otimes f^{i_{1}}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} F^{j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes F^{i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes F^{j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes f^{i_{1}}
$$

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}=P_{i_{1} \rightarrow j_{1}} \otimes f^{i_{1}}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} F^{j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes F^{i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes F^{j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes f^{i_{1}}
$$

- the form of the dDGLAP equation is a generalization of LO and NLO results

QCD evolution of PDFs and DPDs

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} f^{j_{1}}=P_{i_{1} \rightarrow j_{1}} \otimes f^{i_{1}}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} F^{j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes F^{i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes F^{j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes f^{i_{1}}
$$

- the form of the dDGLAP equation is a generalization of LO and NLO results
- by comparing our proposed form of the dDGLAP equation to the explicit μ-dependence of the renormalised DPD and using the relations obtained from the validity of the sum rules for renormalised quantities we were able to derive analogous sum rules for the $1 \rightarrow 2$ splitting kernels

Consistency Checks

- comparing the μ-dependence of the renormalised DPD to the dDGLAP-equation one finds the following relation

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} Z_{i_{1}^{\prime} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\sum_{i_{1}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{~d} z_{1}}{z_{1}} P_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) Z_{i_{1}^{\prime} \rightarrow i_{1} j_{2}}\left(z_{1}, x_{2}\right) \\
& +\sum_{i_{2}} \int_{x_{2}}^{1-x_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}} P_{i_{2} \rightarrow j_{2}}\left(\frac{x_{2}}{z_{2}}\right) Z_{i_{1}^{\prime} \rightarrow j_{1} i_{2}}\left(x_{1}, z_{2}\right)+\sum_{i_{1}} \int_{x_{1}+x_{2}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}^{2}} P_{i_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{1}}\right) Z_{i_{1}^{\prime} \rightarrow i_{1}}\left(z_{1}\right)
\end{aligned}
$$

Consistency Checks

- comparing the μ-dependence of the renormalised DPD to the dDGLAP-equation one finds the following relation

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} Z_{i_{1}^{\prime} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\sum_{i_{1}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{~d} z_{1}}{z_{1}} P_{i_{1} \rightarrow j_{1}}\left(\frac{x_{1}}{z_{1}}\right) Z_{i_{1}^{\prime} \rightarrow i_{1} j_{2}}\left(z_{1}, x_{2}\right) \\
& +\sum_{i_{2}} \int_{x_{2}}^{1-x_{1}} \frac{\mathrm{~d} z_{2}}{z_{2}} P_{i_{2} \rightarrow j_{2}}\left(\frac{x_{2}}{z_{2}}\right) Z_{i_{1}^{\prime} \rightarrow j_{1} i_{2}}\left(x_{1}, z_{2}\right)+\sum_{i_{1}} \int_{x_{1}+x_{2}}^{1} \frac{\mathrm{~d} z_{1}}{z_{1}^{2}} P_{i_{1} \rightarrow j_{1} j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{1}}\right) Z_{i_{1}^{\prime} \rightarrow i_{1}}\left(z_{1}\right)
\end{aligned}
$$

- exactly the same structure as the dDGLAP equation, just like in the case of the regular PDF renormalisation factors

Consistency Checks

$\frac{\mathrm{d}}{\mathrm{d} \log \left(\mu^{2}\right)} Z_{i_{1}^{\prime} \rightarrow j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1}}$

Consistency Checks

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} Z_{i_{1}^{\prime} \rightarrow j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1}}
$$

In combination with the sum rules for the $1 \rightarrow 2$ renormalisation factors, this allows to obtain analogous number and momentum sum rules for the new $1 \rightarrow 2$ splitting kernels

$$
\begin{gathered}
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(Z_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)-Z_{i_{1} \rightarrow j_{1} \overline{j_{2}}}\left(x_{1}, x_{2}\right)\right)=\left(\delta_{i_{1}, j_{2}}-\delta_{i_{1}, \overline{j_{2}}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) Z_{i_{1} \rightarrow j_{1}}\left(x_{1}\right) b \\
\sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} Z_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) Z_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
\end{gathered}
$$

Consistency Checks

$$
\frac{\mathrm{d}}{\mathrm{~d} \log \left(\mu^{2}\right)} Z_{i_{1}^{\prime} \rightarrow j_{1} j_{2}}=P_{i_{1} \rightarrow j_{1}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1} j_{2}}+P_{i_{2} \rightarrow j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow j_{1} i_{2}}+P_{i_{1} \rightarrow j_{1} j_{2}} \otimes Z_{i_{1}^{\prime} \rightarrow i_{1}}
$$

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)-P_{i_{1} \rightarrow j_{1}} \overline{j_{2}}\left(x_{1}, x_{2}\right)\right)=\left(\delta_{i_{1}, j_{2}}-\delta_{i_{1}, \overline{j_{2}}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

$$
\sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

Consistency Checks

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)-P_{i_{1} \rightarrow j_{1}} \overline{j_{2}}\left(x_{1}, x_{2}\right)\right)=\left(\delta_{i_{1}, j_{2}}-\delta_{i_{1}, \overline{j_{2}}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

$$
\sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

- can be used to show stability of the DPD sum rules under QCD evolution

Consistency Checks

$$
\int_{0}^{1-x_{1}} \mathrm{~d} x_{2}\left(P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)-P_{i_{1} \rightarrow j_{1}} \overline{j_{2}}\left(x_{1}, x_{2}\right)\right)=\left(\delta_{i_{1}, j_{2}}-\delta_{i_{1}, \overline{j_{2}}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

$$
\sum_{j_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} P_{i_{1} \rightarrow j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right) P_{i_{1} \rightarrow j_{1}}\left(x_{1}\right)
$$

- can be used to show stability of the DPD sum rules under QCD evolution
- as it should already be clear after the proof that the sum rules hold for renormalised quantities, that they are also stable under evolution, this acts as a consistency check for our proposed dDGLAP-equation

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders
- this allowed us to derive number and momentum sum rules for the $1 \rightarrow 2$ splitting kernels

Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders
- this allowed us to derive number and momentum sum rules for the $1 \rightarrow 2$ splitting kernels
- as a consistency check we showed that with our proposed dDGLAP-equation the sum rules are preserved under evolution

LCPT I: Motivation

As an example consider a quark loop in ϕ^{3} theory:

LCPT I: Motivation

As an example consider a quark loop in ϕ^{3} theory:

In covariant PT the loop is given by

$$
\int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{1}{p^{2}-m^{2}+i \epsilon} \frac{1}{(p-k)^{2}-m^{2}+i \epsilon}
$$

LCPT I: Motivation

As an example consider a quark loop in ϕ^{3} theory:

In covariant PT the loop is given by

$$
\int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{1}{p^{2}-m^{2}+i \epsilon} \frac{1}{(p-k)^{2}-m^{2}+i \epsilon}
$$

Performing the k^{-}integration using Cauchy's theorem one finds

$$
\int_{0}^{p^{+}} \frac{\mathrm{d} k^{+}}{2 \pi} \int \frac{\mathrm{~d}^{D-2} \boldsymbol{k}}{(2 \pi)^{D-2}} \frac{1}{\left(2 k^{+}\right)\left(2\left(p^{+}-k^{+}\right)\right)} \frac{1}{p^{-}-\frac{\boldsymbol{k}^{2}+m^{2}}{2 k^{+}}-\frac{(\boldsymbol{p}-\boldsymbol{k})^{2}+m^{2}}{2\left(p^{+}-k^{+}\right)}+i \epsilon}
$$

LCPT I: Motivation

As an example consider a quark loop in ϕ^{3} theory:

Generally the denominator for a state ζ_{i} between two vertices x_{i} and x_{i+1} is given by:

$$
\frac{1}{P_{i}^{-}-\sum_{l \in i} k_{l, \text { on }- \text { shell }}^{-}+i \epsilon}
$$

where P_{i} is the sum of all external momenta entering the graph before vertex i and the sum is over the on-shell minus momenta of all lines in the state

LCPT II: Rules

- Starting from a given Feynman diagram one has to consider all possible x^{+}-orderings of the vertices. In order to visualise these orderings one uses that x^{+}increases from left to right on the lhs of the cut while it increases from right to left on the rhs of the cut.
- Coupling constants and vertex factors are the same as in covariant PT.
- Plus and transversal momenta, k_{l}^{+}und \boldsymbol{k}_{l}, of a line l are conserved at the vertices
- Each line l in a graph comes with a factor $\frac{1}{2 k_{l}^{+}}$and a Heaviside function $\Theta\left(k_{l}^{+}\right)$, corresponding to propagation from lower to higher x^{+}
- For each loop theres an integral over plus and transversal components of the loop momentum ℓ :

$$
\int \frac{\mathrm{d} \ell^{+} \mathrm{d}^{d-2} \ell}{(2 \pi)^{d-1}}
$$

- For each state ζ_{i} between two vertices x_{i}^{+}und x_{i+1}^{+}one gets the aforementioned factor

$$
\frac{1}{P_{i}^{-}-\sum_{l \in i} k_{l, \text { on-shell }}^{-}+i \epsilon}
$$

LCPT III: PDF and DPD Definitions in LCPT

$$
\begin{aligned}
f_{B}^{j_{1}}\left(x_{1}\right)= & \sum_{t} \sum_{c} \sum_{o}\left(k_{1}^{+}\right)^{n_{1}} \int \frac{\mathrm{~d} k_{1}^{-} \mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D}}\left(\prod_{i=2}^{M(c)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right)\left(\prod_{i=M(c)+1}^{N(t)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right) \\
& \times \Phi_{P D F_{t, c, o}^{j_{1}}}\left(\left\{k^{+}\right\},\{\boldsymbol{k}\}\right) 2 \pi \delta\left(p^{-}-k^{-}-\sum_{i=2}^{N} k_{i, \text { on-shell }}^{-}\right) \delta\left(p^{+}-\sum_{i=1}^{N} k_{i}^{+}\right)
\end{aligned}
$$

where $n_{1}=1$ if parton 1 is a gluon or a scalar quark, while for Dirac quarks one has $n_{1}=0$.

LCPT III: PDF and DPD Definitions in LCPT

$$
\begin{aligned}
f_{B}^{j_{1}}\left(x_{1}\right)= & \sum_{t} \sum_{c} \sum_{o}\left(k_{1}^{+}\right)^{n_{1}} \int \frac{\mathrm{~d} k_{1}^{-} \mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D}}\left(\prod_{i=2}^{M(c)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right)\left(\prod_{i=M(c)+1}^{N(t)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right) \\
& \times \Phi_{P D F_{t, c, o}}^{j_{1}}\left(\left\{k^{+}\right\},\{\boldsymbol{k}\}\right) 2 \pi \delta\left(p^{-}-k^{-}-\sum_{i=2}^{N} k_{i, \text { on-shell }}^{-}\right) \delta\left(p^{+}-\sum_{i=1}^{N} k_{i}^{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{B}^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(k_{1}^{+}\right)^{n_{1}}\left(k_{2}^{+}\right)^{n_{2}} 2 p^{+}(2 \pi)^{D-1} \\
& \times \int \frac{\mathrm{d} k_{1}^{-} \mathrm{d} k_{l}^{-} \mathrm{d} \Delta^{-} \mathrm{d}^{D-2} \boldsymbol{k}_{1} \mathrm{~d}^{D-2} \boldsymbol{k}_{l}}{(2 \pi)^{3 D}}\left(\prod_{i=2, i \neq l}^{M(c)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right)\left(\prod_{i=M(c)+1}^{N(t)} \frac{\mathrm{d} k_{i}^{+} \mathrm{d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}\right) \\
& \times \Phi_{D P D_{t, c, o}}^{j_{1} j_{2}}\left(\left\{k^{+}\right\},\{\boldsymbol{k}\}\right) 2 \pi \delta\left(p^{-}-k_{1}^{-}-k_{l}^{-}-\sum_{i=2, i \neq l}^{M(c)} k_{i, \text { on-shell }}^{-}\right) \delta\left(p^{+}-\sum_{i=1}^{M(c)} k_{i}^{+}\right)
\end{aligned}
$$

LCPT IV: contributing x^{+}orderings for PDFs

Consider an arbitrary LCPT PDF graph

LCPT IV: contributing x^{+}orderings for PDFs

Consider an arbitrary LCPT PDF graph

This can be decomposed as

$$
\Phi_{P D F}=I F\left(F_{A}\right) I^{\prime}
$$

LCPT IV: contributing x^{+}orderings for PDFs

Consider an arbitrary LCPT PDF graph

This can be decomposed as

$$
\Phi_{P D F}=I F\left(F_{A}\right) I^{\prime}
$$

where

$$
\begin{aligned}
I= & \prod_{\substack{\text { states } \zeta \\
\zeta<H}} \frac{1}{p^{-}-\sum_{l \in \zeta} k_{l, \text { o.s. }}^{-}+i \epsilon} \quad I^{\prime}=\prod_{\substack{\text { states } \zeta \\
\zeta<H^{\prime}}} \frac{1}{p^{-}-\sum_{l \in \zeta} k_{l, \text { o.s. }}^{-}-i \epsilon} \\
F\left(F_{A}\right)= & \prod_{\substack{\text { states } \zeta \\
H<\zeta<F_{A}}} \frac{1}{p^{-}-k^{-}-\sum_{l \in \zeta} k_{l, \text { o.s. }}^{-}+i \epsilon} \prod_{\substack{\text { states } \zeta \\
H^{\prime}<\zeta<F_{A}}} \frac{1}{p^{-}-k^{-}-\sum_{l \in \zeta} k_{l, \text { o.s. }}^{-}-i \epsilon} \\
& \times 2 \pi \delta\left(p^{-}-k^{-}-\sum_{l \in F_{A}} k_{l, \text { o.s. }}^{-}\right)
\end{aligned}
$$

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

$$
\sum_{F_{A}} F\left(F_{A}\right)=\sum_{c=1}^{N}\left[\prod_{f=1}^{c-1} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon} 2 \pi \delta\left(p^{-}-k^{-}-D_{c}\right) \prod_{f=c+1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

where

$$
D_{f}=\sum_{l \in f} k_{l, \text { on-shell }}^{-},
$$

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

$$
\sum_{F_{A}} F\left(F_{A}\right)=\sum_{c=1}^{N}\left[\prod_{f=1}^{c-1} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon} 2 \pi \delta\left(p^{-}-k^{-}-D_{c}\right) \prod_{f=c+1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

rewriting the on-shell δ function as

$$
2 \pi \delta(x)=i\left[\frac{1}{x+i \epsilon}-\frac{1}{x-i \epsilon}\right]
$$

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

$$
\sum_{F_{A}} F\left(F_{A}\right)=\sum_{c=1}^{N}\left[\prod_{f=1}^{c-1} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon} 2 \pi \delta\left(p^{-}-k^{-}-D_{c}\right) \prod_{f=c+1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

rewriting the on-shell δ function as

$$
2 \pi \delta(x)=i\left[\frac{1}{x+i \epsilon}-\frac{1}{x-i \epsilon}\right]
$$

the above equation becomes

$$
\sum_{F_{A}} F\left(F_{A}\right)=i\left[\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon}-\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

$$
\sum_{F_{A}} F\left(F_{A}\right)=\sum_{c=1}^{N}\left[\prod_{f=1}^{c-1} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon} 2 \pi \delta\left(p^{-}-k^{-}-D_{c}\right) \prod_{f=c+1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

rewriting the on-shell δ function as

$$
2 \pi \delta(x)=i\left[\frac{1}{x+i \epsilon}-\frac{1}{x-i \epsilon}\right]
$$

the above equation becomes

$$
\sum_{F_{A}} F\left(F_{A}\right)=i\left[\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon}-\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

For $N \geq 2$ this expression vanishes after integration over k^{-}while for $N=1$ the on-shell δ function is reproduced.

LCPT IV: contributing x^{+}orderings for PDFs

Assuming that there are N distinct states between H and H^{\prime} there are thus also N possible choices for the final state cut F_{A}. Summing $F\left(F_{A}\right)$ over all cuts one finds the following

$$
\sum_{F_{A}} F\left(F_{A}\right)=\sum_{c=1}^{N}\left[\prod_{f=1}^{c-1} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon} 2 \pi \delta\left(p^{-}-k^{-}-D_{c}\right) \prod_{f=c+1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

rewriting the on-shell δ function as

$$
2 \pi \delta(x)=i\left[\frac{1}{x+i \epsilon}-\frac{1}{x-i \epsilon}\right]
$$

the above equation becomes

$$
\sum_{F_{A}} F\left(F_{A}\right)=i\left[\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}+i \epsilon}-\prod_{f=1}^{N} \frac{1}{p^{-}-k^{-}-D_{f}-i \epsilon}\right]
$$

For $N \geq 2$ this expression vanishes after integration over k^{-}while for $N=1$ the on-shell δ function is reproduced.
One can thus conclude, that only such x^{+}orderings with only one state between the two hard vertices have to be considered.

LCPT V: contributing x^{+}orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$
\Phi_{D P D}=I_{1} I_{2} F\left(F_{A}\right) I_{2}^{\prime} I_{1}^{\prime}
$$

LCPT V: contributing x^{+}orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$
\Phi_{D P D}=I_{1} I_{2} F\left(F_{A}\right) I_{2}^{\prime} I_{1}^{\prime}
$$

to be able to use the same argument as before consider the following two x^{+}orderings

LCPT V: contributing x^{+}orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$
\Phi_{D P D}=I_{1} I_{2} F\left(F_{A}\right) I_{2}^{\prime} I_{1}^{\prime}
$$

to be able to use the same argument as before consider the following two x^{+}orderings

Consider now the states between H_{1} and H_{2}, I_{2} and \tilde{I}_{2}

$$
I_{2}=\frac{1}{p^{-}-\left(K^{-}-k^{\prime-}\right)-D_{I_{2}}+i \epsilon}
$$

$$
\tilde{I}_{2}=\frac{1}{p^{-}-k^{\prime-}-D_{\tilde{I}_{2}}+i \epsilon}
$$

LCPT V: contributing x^{+}orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$
\Phi_{D P D}=I_{1} I_{2} F\left(F_{A}\right) I_{2}^{\prime} I_{1}^{\prime}
$$

to be able to use the same argument as before consider the following two x^{+}orderings

As $k^{\prime-}$ only occurs in these energy denominators we can sum these two x^{+}orderings and integrate over $k^{\prime-}$

$$
\int \frac{\mathrm{d} k^{-}}{2 \pi}\left[I_{2}+\tilde{I}_{2}\right]=\int \frac{\mathrm{d} k^{\prime-}}{2 \pi}\left[\frac{2 p^{-}-K^{-}-D_{\tilde{I}_{2}}-D_{I_{2}}}{\left(p^{-}-\left(K^{-}-k^{\prime-}\right)-D_{I_{2}}+i \epsilon\right)\left(p^{-}-k^{\prime-}-D_{\tilde{I}_{2}}+i \epsilon\right)}\right]=-i
$$

Repeating the same on the rhs yields a factor of i.

LCPT V: contributing x^{+}orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$
\Phi_{D P D}=I_{1} I_{2} F\left(F_{A}\right) I_{2}^{\prime} I_{1}^{\prime}
$$

Thus we can conclude, that summing over the possible orderings of the hard vertices and integrating over $k^{\prime-}$ and $k^{\prime \prime-}$ is tantamount to setting the hard vertices on each side of the final state cut to the same x^{+}value

LCPT VI: updated PDF and DPD definitions

$$
\begin{aligned}
& f_{B}^{j_{1}}\left(x_{1}\right)=\sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F_{B}^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)=\sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(x_{1} p^{+}\right)^{n_{1}} 2 p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{\left.(2 \pi)^{D-1} p^{+}\right)}\right. \\
& \times\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1} j_{2}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

LCPT VI: updated PDF and DPD definitions

$$
\begin{aligned}
& f_{B}^{j_{1}}\left(x_{1}\right)= \sum_{t} \\
& \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} F_{B}^{j_{1} j_{2}}\left(x_{1}, x_{2}\right)= \sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(x_{1} p^{+}\right)^{n_{1}} 2 p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{\left.(2 \pi)^{D-1} p^{+}\right)}\right. \\
& \times\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1} j_{2}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

Comparing these expressions, one finds that the rhs is basically the same (neglecting the sum over l) if one can show that

$$
2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}}=\Phi_{P D F_{t, c, o}}^{j_{1}}
$$

Number Sum Rule

Assuming we have shown that $2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}}=\Phi_{P D F_{t, c, o}}^{j_{1}}$ the number sum rule can be rewritten as

$$
\begin{aligned}
& \sum_{t} \sum_{c} \sum_{o} \sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right)\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& =\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

Number Sum Rule

Assuming we have shown that $2\left(x_{l} p^{+}\right)^{n_{l}} \Phi_{D P D_{t, c, o}}^{j_{1}, j_{2}}=\Phi_{P D F_{t, c, o}}^{j_{1}}$ the number sum rule can be rewritten as

$$
\begin{aligned}
& \sum_{t} \sum_{c} \sum_{o} \sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right)\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& =\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{{\mathrm{d} x_{i}} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

which reduces to

$$
\sum_{l}\left(\delta_{f(l), j_{2}}-\delta_{f(l), \overline{j_{2}}}\right)=\left(N_{j_{2 v}}+\delta_{j_{1}, \overline{j_{2}}}-\delta_{j_{1}, j_{2}}\right)
$$

Momentum Sum Rule

For the momentum sum rule one analogously finds

$$
\begin{aligned}
& \sum_{j_{2}} \sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times x_{l} \Phi_{P D F_{t, c, o}^{j_{1}}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& =\left(1-x_{1}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

Momentum Sum Rule

For the momentum sum rule one analogously finds

$$
\begin{aligned}
& \sum_{j_{2}} \sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& =\left(1-x_{1}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \boldsymbol{k}_{1}}{(2 \pi)^{D-1}}\left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_{i} \mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}} p^{+}\right) \\
& \quad \times \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

using a shorthand notation for the integration measures

$$
\int \mathrm{D}_{a}^{b}\left[x_{i}\right]=\prod_{i=a}^{b} \int_{0}^{1} \mathrm{~d} x_{i} p^{+} \quad \int \mathrm{D}_{a}^{b}\left[\boldsymbol{k}_{i}\right]=\prod_{i=a}^{b} \int \frac{\mathrm{~d}^{D-2} \boldsymbol{k}_{i}}{(2 \pi)^{D-1}}
$$

Momentum Sum Rule

this can be rewritten as

$$
\begin{aligned}
& \sum_{t} \sum_{c} \sum_{o} \sum_{l}\left(x_{1} p^{+}\right)^{n} p^{+} \int_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c}, o}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
& =\left(1-x_{1}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int_{2}^{N(t)}\left[x_{i}\right] D_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c}, o}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta_{i=1}^{M(c)} 1_{i} \sum_{i} x_{i}
\end{aligned}
$$

Momentum Sum Rule

this can be rewritten as

$$
\begin{aligned}
& \sum_{t} \sum_{c} \sum_{o} \sum_{l}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
= & \left(1-x_{1}\right) \sum_{t} \sum_{c} \sum_{o}\left(x_{1} p^{+}\right)^{n_{1}} p^{+} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

which reduces to

$$
\begin{aligned}
& \sum_{l} \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] x_{l} \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right) \\
= & \left(1-x_{1}\right) \int \mathrm{D}_{2}^{N(t)}\left[x_{i}\right] \mathrm{D}_{1}^{N(t)}\left[\boldsymbol{k}_{i}\right] \Phi_{P D F_{t, c, o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)
\end{aligned}
$$

