DPS @ MPI 2016 DPD sum rules in QCD

December 1, 2016

P. Plößl¹ A. Schäfer¹ M. Diehl²

¹Institut für theoretische Physik Universität Regensburg, 93053 Regensburg ²Deutsches Elektronen-Synchrotron DESY 22603 Hamburg

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

Outline

Introduction

Preliminaries Definitions $\mathcal{O}(\alpha_s)$ example Proof for bare quantities

Extension of the proof to renormalised quantities Renormalised PDFs and DPDs Number Sum Rule Momentum Sum Rule

QCD Evolution dDGLAP Equation Consistency Checks

Summary

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$$\underbrace{Number Sum Rule}_{\substack{j_{1}, j_{2}, v \ j_{1}, j_{2}, v \ j_{1}, j_{2}, v \ j_{1}, j_{2}}}_{Momentum Sum Rule} = \int_{j_{2}}^{1-x_{1}} dx_{2} F^{j_{1}j_{2}, v}(x_{1}, x_{2}) = \left(N_{j_{2}, v} + \delta_{j_{1}, j_{2}} - \delta_{j_{1}, j_{2}}\right) f^{j_{1}}(x_{1}) \\ \sum_{j_{2}}^{1-x_{1}} \int_{0}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1}, x_{2}) = (M-x_{1}) f^{j_{1}}(x_{1})$$
Stirling, Gaunt 2010

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

DPD Sum Rules

$$\underbrace{Number Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2},v}(x_{1},x_{2}) = \left(N_{j_{2},v} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling Gaunt 201

motivated by a probabilistic interpretation of the parton model

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$$\underbrace{Number Sum Rule}_{j_{0}} \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) = \left(N_{j_{2,v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{j_{2}} \int_{0}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 2010

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$$\underbrace{Number Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2},v}(x_{1},x_{2}) = \left(N_{j_{2},v} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 201

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

$$\sum_{j_1,j_2} \int_0^1 \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \frac{x_1 x_2}{M-x_1} F^{j_1 j_2}(x_1,x_2) = M = 1$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$$\underbrace{Number Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2},v}(x_{1},x_{2}) = \left(N_{j_{2},v} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{\substack{j_{2},v}} \int_{0}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 201

- motivated by a probabilistic interpretation of the parton model
- can be used to construct conserved quantities

$$\int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1-x_{1}} \mathrm{d}x_{2} \left(\frac{F^{j_{1}j_{1,v}}\left(x_{1}, x_{2}\right)}{N_{j_{1,v}} - 1} - \frac{F^{\overline{j_{1}}j_{1,v}}\left(x_{1}, x_{2}\right)}{N_{j_{1,v}} + 1} \right) = N_{j_{1,v}}$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

DPD Sum Rules

$$\underbrace{Number Sum Rule}_{0} \qquad \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2},v}(x_{1},x_{2}) = \left(N_{j_{2},v} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{j_{2}} \qquad \sum_{j_{2}}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 20

 consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$\sum_{j_2} \int_0^1 \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \, x_2 \, F^{j_{1,v}j_2}\left(x_1, x_2\right)$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

DPD Sum Rules

$$\underbrace{Number Sum Rule}_{0} \qquad \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) = \left(N_{j_{2,v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{j_{2}} \qquad \sum_{j_{2}}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 20

 consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$\sum_{j_2} \int_0^1 \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \, x_2 \, F^{j_{1,v}j_2}\left(x_1, x_2\right) = N_{j_{1,v}} - x_{j_{1,v}} \checkmark$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

DPD Sum Rules

$$\underbrace{Number Sum Rule}_{0} \qquad \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2},v}(x_{1},x_{2}) = \left(N_{j_{2},v} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{j_{2}} \qquad \sum_{j_{2}}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 20

 consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$\sum_{j_2} \int_0^1 \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \, x_2 \, F^{j_{1,v}j_2}\left(x_1, x_2\right) = N_{j_{1,v}} - x_{j_{1,v}} \checkmark$$

> put constraints on the DPDs and can therefore be used to refine DPD-models

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

DPD Sum Rules

$$\underbrace{Number Sum Rule}_{0} \qquad \int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) = \left(N_{j_{2,v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1})$$

$$\underbrace{Momentum Sum Rule}_{j_{2}} \qquad \sum_{j_{2}}^{1-x_{1}} dx_{2} x_{2} F^{j_{1}j_{2}}(x_{1},x_{2}) = (M-x_{1})f^{j_{1}}(x_{1})$$
Stirling, Gaunt 20

 consistency check: performing the following integral using either the DPD number(momentum) sum rule and the PDF momentum(number) sum rule should yield the same result

$$\sum_{j_2} \int_0^1 \mathrm{d}x_1 \int_0^{1-x_1} \mathrm{d}x_2 \, x_2 \, F^{j_{1,v}j_2}\left(x_1, x_2\right) = N_{j_{1,v}} - x_{j_{1,v}} \checkmark$$

- > put constraints on the DPDs and can therefore be used to refine DPD-models
- prove that these sum rules are fulfilled in QCD

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		•			

Definitions

$$\begin{split} f^{j_1}\left(x_1, \mathbf{k}_1\right) &= \int \frac{\mathrm{d}z_1^-}{2\pi} \mathrm{e}^{ix_1 z_1^- p^+} \int \frac{\mathrm{d}^2 \mathbf{z}_1^-}{(2\pi)^2} \mathrm{e}^{i\mathbf{z}_1 \mathbf{k}_1} \langle p | \overline{q}_{j_1}\left(-\frac{z_1}{2}\right) \Gamma_a \, q_{j_1}\left(\frac{z_1}{2}\right) | p \rangle \\ F^{j_1 j_2}\left(x_1, x_2, \mathbf{k}_1, \mathbf{k}_2, \mathbf{\Delta}\right) &= \left[\prod_{i=1}^2 \int \frac{\mathrm{d}z_i^-}{2\pi} \mathrm{e}^{ix_i z_i^- p^+} \int \frac{\mathrm{d}^2 \mathbf{z}_i^-}{(2\pi)^2} \mathrm{e}^{i\mathbf{z}_i \mathbf{k}_i} \right] \left[2p^+ \int \frac{\mathrm{d}y_1^-}{2\pi} \frac{\mathrm{d}^2 \mathbf{y}_1}{(2\pi)^2} \mathrm{e}^{i\mathbf{y}_1 \mathbf{\Delta}} \right] \\ &\times \langle p | \overline{q}_{j_2}\left(-\frac{z_2}{2}\right) \Gamma_a \, q_{j_2}\left(\frac{z_2}{2}\right) \overline{q}_{j_1}\left(y_1 - \frac{z_1}{2}\right) \Gamma_a \, q_{j_1}\left(y_1 + \frac{z_2}{2}\right) | p \rangle \end{split}$$

Diehl, Ostermeier, Schäfer 2011

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		•			

Definitions

$$\begin{split} f^{j_1}\left(x_1, \mathbf{k}_1\right) &= \int \frac{\mathrm{d}z_1^-}{2\pi} \mathrm{e}^{ix_1 z_1^- p^+} \int \frac{\mathrm{d}^2 \mathbf{z}_1^-}{(2\pi)^2} \mathrm{e}^{i\mathbf{z}_1 \mathbf{k}_1} \langle p | \overline{q}_{j_1}\left(-\frac{z_1}{2}\right) \Gamma_a \, q_{j_1}\left(\frac{z_1}{2}\right) | p \rangle \\ F^{j_1 j_2}\left(x_1, x_2, \mathbf{k}_1, \mathbf{k}_2, \mathbf{\Delta}\right) &= \left[\prod_{i=1}^2 \int \frac{\mathrm{d}z_i^-}{2\pi} \mathrm{e}^{ix_i z_i^- p^+} \int \frac{\mathrm{d}^2 \mathbf{z}_i^-}{(2\pi)^2} \mathrm{e}^{i\mathbf{z}_i \mathbf{k}_i} \right] \left[2p^+ \int \frac{\mathrm{d}y_1^-}{2\pi} \frac{\mathrm{d}^2 \mathbf{y}_1}{(2\pi)^2} \mathrm{e}^{i\mathbf{y}_1 \mathbf{\Delta}} \right] \\ &\times \langle p | \overline{q}_{j_2}\left(-\frac{z_2}{2}\right) \Gamma_a \, q_{j_2}\left(\frac{z_2}{2}\right) \overline{q}_{j_1}\left(y_1 - \frac{z_1}{2}\right) \Gamma_a \, q_{j_1}\left(y_1 + \frac{z_2}{2}\right) | p \rangle \end{split}$$

Diehl, Ostermeier, Schäfer 2011

► can be interpreted in terms of Feynman diagrams, e.g.

$$f^{j_i}(x_1, k_1) = \int \frac{\mathrm{d}z_1^-}{(2\pi)^4}$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		0			
		00			

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Outline	Introduction	Preliminaries	${\sf Renormalisation}$	QCD Evolution	
		0			
		00			

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	
		00 00			

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

Consider a toy-model of a meson consisting of an u-quark and \bar{d} -antiquark, splitting into its constituents via a pointlike coupling. For $j_1 = g$ only the following PDFs und DPDs can be realized to $\mathcal{O}(\alpha_s)$: f^g , F^{gu} , $F^{g\bar{d}}$

DPD graphs can be obtained from PDF graphs by "cutting" one of the final state lines, i.e.

Use light-front perturbation theory to show the equivalence between PDF and DPD

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices

- ▶ after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

- ▶ after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

- ▶ after a sum over cuts, only such LC orderings of a PDF graph have to be considered, where there is only one state between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016

PDF and DPD definitions

$$\begin{split} f_B^{j_1}(x_1) &= \sum_t \sum_c \sum_o \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \Big(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \Big) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{\mathbf{k}\} \right) \delta \Big(1 - \sum_{i=1}^{M(c)} x_i \Big) \end{split}$$

$$\int_{0}^{1-x_{1}} dx_{2} F_{B}^{j_{1}j_{2}}(x_{1}, x_{2}) = \sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}} (x_{1}p^{+})^{n_{1}} 2p^{+} \int \frac{d^{D-2}\mathbf{k}_{1}}{(2\pi)^{D-1}} \Big(\prod_{i=2}^{N(t)} \frac{dx_{i}d^{D-2}\mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \Big) \\ \times (x_{l} p^{+})^{n_{l}} \Phi_{DPD_{t,c,o}}^{j_{1}j_{2}} (\{x\}, \{k\}) \delta \Big(1 - \sum_{i=1}^{M(c)} x_{i} \Big)$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

- after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 ○● ○○			

- ▶ after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- ▶ thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$2(x_l p^+)^{n_l} \Phi_{DPDt,c,o}^{j_1, j_2} \stackrel{?}{=} \Phi_{PDFt,c,o}^{j_1}$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

- ▶ after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- ▶ thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$2(x_l p^+)^{n_l} \Phi_{DPDt,c,o}^{j_1, j_2} \stackrel{?}{=} \Phi_{PDFt,c,o}^{j_1}$$

(obtained from integrating a j_1j_2 -DPD over the momentum fraction of parton 2 and comparing the result to a j_1 -PDF)

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

- ▶ after a sum over cuts, only such LC orderings of a given PDF graph have to be considered, where there is only one "state" between the two hard vertices
- performing the integrations over the minus momenta of the two active partons in a DPD is tantamount to setting them to the same x^+ -value
- ▶ thus for DPDs also only such LC orderings with only one "state" between the two hard vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the following relation:

$$2(x_l p^+)^{n_l} \Phi^{j_1, j_2}_{DPD_{t,c,o}} = \Phi^{j_1}_{PDF_{t,c,o}}$$

(obtained from integrating a $j_1 j_2$ -DPD over the momentum fraction of parton 2 and comparing the result to a j_1 -PDF) Careful analysis of the LCPT expressions $\Phi_{DPD_{t,c,o}}^{j_1, j_2}$ and $\Phi_{PDF_{t,c,o}}^{j_1}$ shows that this is indeed the case

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		0			

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_2} - \delta_{f(l), \overline{j_2}} \right) = \left(N_{j_2, v} + \delta_{j_1, \overline{j_2}} - \delta_{j_1, j_2} \right)$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		00			

Number Sum Rule

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N\left(j_{2} \right)_{t,c,o} - N\left(\overline{j}_{2} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N \left(j_{2} \right)_{t,c,o} - N \left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N\left(j_2\right)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi^{j_1}_{PDF_{t,c,o}}$

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N \left(j_{2} \right)_{t,c,o} - N \left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N(j_2)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi_{PDF_{t,c,o}}^{j_1}$ Assuming that there are $N_{j_2,v}$ j_2 -valence quarks inside the hadron under consideration plus an arbitray number of $j_2\overline{j_2}$ -pairs one can determine $N(j_2)_{t,c,o} - N(\overline{j_2})_{t,c,o}$ in terms of j_1 :

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N \left(j_{2} \right)_{t,c,o} - N \left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N(j_2)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi_{PDFt,c,o}^{j_1}$ Assuming that there are $N_{j_2,v}$ j_2 -valence quarks inside the hadron under consideration plus an arbitray number of $j_2\overline{j_2}$ -pairs one can determine $N(j_2)_{t,c,o} - N(\overline{j_2})_{t,c,o}$ in terms of j_1 :

$$j_1 \neq j_2, \overline{j_2}$$
 $(N_{j_{2,v}} + x) - x = N_{j_{2,v}}$

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N\left(j_{2} \right)_{t,c,o} - N\left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N(j_2)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi_{PDFt,c,o}^{j_1}$ Assuming that there are $N_{j_2,v}$ j_2 -valence quarks inside the hadron under consideration plus an arbitray number of $j_2\overline{j_2}$ -pairs one can determine $N(j_2)_{t,c,o} - N(\overline{j_2})_{t,c,o}$ in terms of j_1 :

$$j_{1} \neq j_{2}, \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - x = N_{j_{2,v}}$$

$$j_{1} = \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - (x - 1) = N_{j_{2,v}} + 1$$

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N\left(j_{2} \right)_{t,c,o} - N\left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N(j_2)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi_{PDFt,c,o}^{j_1}$ Assuming that there are $N_{j_2,v}$ j_2 -valence quarks inside the hadron under consideration plus an arbitray number of $j_2\overline{j_2}$ -pairs one can determine $N(j_2)_{t,c,o} - N(\overline{j_2})_{t,c,o}$ in terms of j_1 :

$$j_{1} \neq j_{2}, \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - x = N_{j_{2,v}}$$

$$j_{1} = \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - (x - 1) = N_{j_{2,v}} + 1$$

$$j_{1} = j_{2} \qquad \left(N_{j_{2,v}} + x - 1\right) - x = N_{j_{2,v}} - 1$$

Using the relation stated above, showing the validity of the number sum rule for bare quantities reduces to showing that the following holds

$$\sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$
$$\left(N\left(j_{2} \right)_{t,c,o} - N\left(\overline{j_{2}} \right)_{t,c,o} \right) = \left(N_{j_{2,v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right)$$

where $N(j_2)_{t,c,o}$ is the number of j_2 -quarks running across the final state cut in $\Phi_{PDF_{t,c,o}}^{j_1}$ Assuming that there are $N_{j_2,v}$ j_2 -valence quarks inside the hadron under consideration plus an arbitray number of $j_2\overline{j_2}$ -pairs one can determine $N(j_2)_{t,c,o} - N(\overline{j_2})_{t,c,o}$ in terms of j_1 :

$$j_{1} \neq j_{2}, \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - x = N_{j_{2,v}}$$

$$j_{1} = \overline{j_{2}} \qquad \left(N_{j_{2,v}} + x\right) - (x - 1) = N_{j_{2,v}} + 1$$

$$j_{1} = j_{2} \qquad \left(N_{j_{2,v}} + x - 1\right) - x = N_{j_{2,v}} - 1$$

 $=\!N_{j_{2,v}}\!+\!\delta_{j_1,\,\overline{j_2}}\!-\!\delta_{j_1,\,j_2}$

	Outline	Introduction	Preliminaries 0	Renormalisation	QCD Evolution	
UR			00 0●			

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$\sum_{l} \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1 - x_{1}) \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$

where

$$\int \mathcal{D}_{a}^{b}[x_{i}] = \prod_{i=a}^{b} \int_{0}^{1} \mathrm{d}x_{i} p^{+} \qquad \qquad \int \mathcal{D}_{a}^{b}[k_{i}] = \prod_{i=a}^{b} \int \frac{\mathrm{d}^{D-2}k_{i}}{(2\pi)^{D-1}},$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 0●			

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$\sum_{l} \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1 - x_{1}) \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$

w.l.o.g. performing the x_2 -integration on both sides, one finds the following

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 0●			

In order to prove the validity of the momentum sum rule one has to show that the following relation is fulfilled:

$$\sum_{l} \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1 - x_{1}) \int \mathcal{D}_{2}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{\mathbf{k}\}) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$

w.l.o.g. performing the x_2 -integration on both sides, one finds the following

$$\int \mathcal{D}_{3}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] \underbrace{\left(1 - x_{1} - \sum_{i=3}^{M(c)} x_{i} + \sum_{j=3}^{M(c)} x_{j}\right)}_{(1-x_{1})} \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{k\})\Big|_{x_{2}=x_{2,0}}$$

$$= (1 - x_{1}) \int \mathcal{D}_{3}^{N(t)} [x_{i}] \mathcal{D}_{1}^{N(t)} [\mathbf{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}} (\{x\}, \{k\})\Big|_{x_{2}=x_{2,0}}$$

ounninary

PDF

$$f^{j_1}(x_1) = \sum_{i_1} \int_{x_1}^{1} \frac{\mathrm{d}z_1}{z_1} Z_{i_1 \to j_1}\left(\frac{x_1}{z_1}\right) f_B^{i_1}(z_1)$$

with renormalisation factors $Z_{i_1\to j_1}$, which in MS-renormalisation have the following expansion in α_s

$$Z_{i_1 \to j_1}\left(x_1\right) = \delta\left(1 - x_1\right)\delta_{i_1, j_1} + \alpha_s \frac{Z_{i_1 \to j_1; 11}}{\varepsilon} + \alpha_s^2 \left(\frac{Z_{i_1 \to j_1; 22}}{\varepsilon^2} + \frac{Z_{i_1 \to j_1; 21}}{\varepsilon}\right) + \dots,$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
			•		

$f^{j_1}\left(x_1\right) = Z_{i_1 \to j_1} \otimes f_B^{i_1}$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
			0			
UK			00			

$f^{j_1}(x_1) = Z_{i_1 \to j_1} \otimes f^{i_1}_B$

DPD

$$F^{j_1 j_2}(x_1, x_2) = \sum_{i_1, i_2} \int_{x_1}^{1-x_2} \frac{dz_1}{z_1} \int_{x_2}^{1-z_1} \frac{dz_2}{z_2} Z_{i_1 \to j_1} \left(\frac{x_1}{z_1}\right) Z_{i_2 \to j_2} \left(\frac{x_2}{z_2}\right) F_B^{i_1 i_2}(z_1, z_2)$$
$$+ \sum_{i_1 x_1 + x_2} \int_{x_1}^{1} \frac{dz_1}{z_1^2} Z_{i_1 \to j_1 j_2} \left(\frac{x_1}{z_1}, \frac{x_2}{z_2}\right) f_B^{i_1}(z_1)$$

with the new renormalisation factors $Z_{i_1 \rightarrow j_1 j_2}$, which are in MS-renormalisation given by

$$Z_{i_1 \to j_1 j_2} = \alpha_s \frac{Z_{i_1 \to j_1 j_2; 11}}{\varepsilon} + \alpha_s^2 \left(\frac{Z_{i_1 \to j_1 j_2; 22}}{\varepsilon^2} + \frac{Z_{i_1 \to j_1 j_2; 21}}{\varepsilon^2} \right) + \dots,$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$f^{j_1}\left(x_1\right) = Z_{i_1 \to j_1} \otimes f_B^{i_1}$

DPD

$$F^{j_1 j_2} \left(x_1, x_2 \right) = Z_{i_1 \to j_1} \otimes Z_{i_2 \to j_2} \otimes F_B^{i_1 i_2} + Z_{i_1 \to j_1 j_2} \otimes f_B^{i_1}$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

$f^{j_1}\left(x_1\right) = Z_{i_1 \to j_1} \otimes f_B^{i_1}$

$F^{j_{1}j_{2}}\left(x_{1}, x_{2}\right) = Z_{i_{1} \to j_{1}} \otimes Z_{i_{2} \to j_{2}} \otimes F_{B}^{i_{1}i_{2}} + Z_{i_{1} \to j_{1}j_{2}} \otimes f_{B}^{i_{1}}$

Finally we define a inverse PDF renormalisation factor $Z^{-1}_{i_1' \to i_1}$, obeying

inverse renormalisation factor

$$\sum_{i_1} \int_{x_1}^1 \frac{\mathrm{d}u_1}{u_1} Z_{i_1',i_1}^{-1} \left(\frac{x_1}{u_1}\right) Z_{i_1,j_1} \left(x_1\right) = \delta_{i_1',j_1} \delta\left(1-x_1\right) \,.$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
				•		

$f^{j_1}\left(x_1\right) = Z_{i_1 \to j_1} \otimes f_B^{i_1}$

$F^{j_1 j_2}(x_1, x_2) = Z_{i_1 \to j_1} \otimes Z_{i_2 \to j_2} \otimes F_B^{i_1 i_2} + Z_{i_1 \to j_1 j_2} \otimes f_B^{i_1}$

inverse renormalisation factor

$$\begin{split} Z_{i'_1,i_1}^{-1} \otimes Z_{i_1,j_1} &= \delta_{i'_1,j_1} \delta \left(1 - x_1 \right) \\ f_B^{i_1} &= Z_{i'_1,i_1}^{-1} \otimes f^{i'_1} \end{split}$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	
II R				•		

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{du_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

UR	Outline	Introduction	Preliminaries 0 00	Renormalisation 0 0	QCD Evolution	

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} dx_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{du_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

where $R'(x_1, u_1)$ is given by

$$\begin{split} R'(x_1, u_1) &= \\ \sum_{i_1} \int_{x_1}^{u_1} \frac{\mathrm{d}z_1}{z_1} Z_{i'_1 \to i_1}^{-1} \left(\frac{x_1}{u_1} \right) \left[\left(Z_{i_1 \to j_1} \left(\frac{x_1}{z_1} \right) - \delta \left(1 - \frac{x_1}{z_1} \right) \delta_{i_1, j_1} \right) \left(\delta_{i_1, \overline{j_2}} - \delta_{i_1, j_2} - \delta_{j_1, \overline{j_2}} + \delta_{j_1, j_2} \right) \\ &+ \int_{0}^{1 - \frac{x_1}{z_1}} \mathrm{d}u_2 \left(Z_{i_1 \to j_1 j_2} \left(\frac{x_1}{z_1}, u_2 \right) - Z_{i_1 \to j_1 \overline{j_2}} \left(\frac{x_1}{z_1}, u_2 \right) \right) \right]. \end{split}$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	
		00	•		
		00			

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{\mathrm{d}u_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

 \blacktriangleright lhs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	
UK			00			

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{\mathrm{d}u_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

 \blacktriangleright lhs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities

 \blacktriangleright thus the same holds for the rhs, i.e. all poles in ε in R' have to cancel

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	
I R			0 00 00	0 ● 0		

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{\mathrm{d}u_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

- \blacktriangleright lhs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- \blacktriangleright thus the same holds for the rhs, i.e. all poles in ε in R' have to cancel
- \blacktriangleright as we subtracted the treelevel term from $Z_{i_1\to j_1}$ in R' it does not contain any terms that are finite for $\varepsilon=0$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
R			000	•		

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{\mathrm{d}u_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

- \blacktriangleright lhs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- \blacktriangleright thus the same holds for the rhs, i.e. all poles in ε in R' have to cancel
- \blacktriangleright as we subtracted the treelevel term from $Z_{i_1\to j_1}$ in R' it does not contain any terms that are finite for $\varepsilon=0$
- i.e. R' = 0, such that the number sum rule holds for MS-renormalised quantities (can easily be extended to $\overline{\text{MS}}$ -renormalisation)

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
R			0 00 00	0 ● 0		

Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced before, we find

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} F^{j_{1}j_{2,v}}(x_{1},x_{2}) - \left(N_{j_{2v}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}}\right) f^{j_{1}}(x_{1}) = \sum_{i_{1}'} \int_{x_{1}}^{1} \frac{\mathrm{d}u_{1}}{u_{1}} f^{i_{1}'}(u_{1}) R'(x_{1},u_{1})$$

- \blacktriangleright lhs of the above equation is finite for $\varepsilon=0$ as it's the difference of renormalised quantities
- \blacktriangleright thus the same holds for the rhs, i.e. all poles in ε in R' have to cancel
- \blacktriangleright as we subtracted the treelevel term from $Z_{i_1\to j_1}$ in R' it does not contain any terms that are finite for $\varepsilon=0$
- i.e. R' = 0, such that the number sum rule holds for MS-renormalised quantities (can easily be extended to $\overline{\text{MS}}$ -renormalisation)

As we now know that R' = 0 we can derive the following relation between the renormalisation factors for the inhomogeneous term and the regular PDF renormalisation factors

Number Sum Rule for renormalisation facotrs

$$\int_{0}^{1-x_{1}} dx_{2} \left(Z_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) - Z_{i_{1} \to j_{1}\overline{j_{2}}}(x_{1}, x_{2}) \right) = \left(\delta_{i_{1}, j_{2}} - \delta_{i_{1}, \overline{j_{2}}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) Z_{i_{1} \to j_{1}}(x_{1})$$

Repeating the same for the momentum sum rule one finds

$$\sum_{j_2} \int_{0}^{1-x_1} dx_2 \, x_2 F^{j_1 j_2} \left(x_1, x_2 \right) - (1-x_1) \, f^{j_1} \left(x_1 \right) = \sum_{i'_1} \int_{x_1}^{1} \frac{du_1}{u_1} f^{i'_1} \left(u_1 \right) R \left(x_1, u_1 \right)$$

Repeating the same for the momentum sum rule one finds

$$\sum_{j_2} \int_{0}^{1-x_1} dx_2 \, x_2 F^{j_1 j_2} \left(x_1, x_2 \right) - (1-x_1) \, f^{j_1} \left(x_1 \right) = \sum_{i'_1} \int_{x_1}^{1} \frac{du_1}{u_1} f^{i'_1} \left(u_1 \right) R \left(x_1, u_1 \right)$$

where $R(x_1, u_1)$ is given by

$$R(x_{1}, u_{1}) = \sum_{i_{1}} \int_{x_{1}}^{u_{1}} \frac{\mathrm{d}z_{1}}{z_{1}} Z_{i_{1}' \to i_{1}}^{-1} \left(\frac{x_{1}}{u_{1}}\right) \left[\left(Z_{i_{1} \to j_{1}} \left(\frac{x_{1}}{z_{1}}\right) - \delta\left(1 - \frac{x_{1}}{z_{1}}\right) \delta_{i_{1}, j_{1}} \right) (x_{1} - z_{1}) + z_{1} \sum_{j_{2}} \int_{0}^{1 - \frac{x_{1}}{z_{1}}} \mathrm{d}u_{2} \, u_{2} \, Z_{i_{1} \to j_{1} j_{2}} \left(\frac{x_{1}}{z_{1}}, u_{2}\right) \right]$$

Repeating the same for the momentum sum rule one finds

$$\sum_{j_2} \int_{0}^{1-x_1} dx_2 \, x_2 F^{j_1 j_2} \left(x_1, x_2 \right) - (1-x_1) \, f^{j_1} \left(x_1 \right) = \sum_{i'_1} \int_{x_1}^{1} \frac{du_1}{u_1} f^{i'_1} \left(u_1 \right) R \left(x_1, u_1 \right)$$

Using the same reasoning as in the case of the number sum rule one can thus conclude, that also the momentum sum rule holds for renormalised quantities. The constraint, that R = 0 yields the following relation between $Z_{i_1 \rightarrow j_1 j_2}$ and $Z_{i_1 \rightarrow j_1}$

Momentum Sum Rule for renormalisation factors

$$\sum_{j_2} \int_0^{1-x_1} dx_2 \, x_2 \, Z_{i_1 \to j_1 j_2}(x_1, x_2) = (1-x_1) Z_{i_1 \to j_1}(x_1)$$

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
				•	
		00			

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}}\left(x_{1}\right) = \sum_{i_{1}}\int_{x_{1}}^{1}\frac{\mathrm{d}z_{1}}{z_{1}}P_{i_{1}\to j_{1}}\left(\frac{x_{1}}{z_{1}}\right)f^{i_{1}}\left(z_{1}\right)$$

where $P_{i_1 \rightarrow j_1}$ are the well known DGLAP splitting kernels.

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
				•	
		00			

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}} = P_{i_{1}\rightarrow j_{1}}\otimes f^{i_{1}}$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
					•	
D,						

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}} = P_{i_{1}\rightarrow j_{1}}\otimes f^{i_{1}}$$

proposed dDGLAP equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}F^{j_{1}j_{2}}\left(x_{1},x_{2}\right) = \sum_{i_{1}}\int_{x_{1}}^{1-x_{2}}\frac{\mathrm{d}z_{1}}{z_{1}}P_{i_{1}\to j_{1}}\left(\frac{x_{1}}{z_{1}}\right)F^{i_{1}j_{2}}\left(z_{1},x_{2}\right)$$
$$+ \sum_{i_{2}}\int_{x_{2}}^{1-x_{1}}\frac{\mathrm{d}z_{2}}{z_{2}}P_{i_{2}\to j_{2}}\left(\frac{x_{2}}{z_{2}}\right)F^{j_{1}i_{2}}\left(x_{1},z_{2}\right) + \sum_{i_{1}x_{1}+x_{2}}\int_{x_{1}}^{1}\frac{\mathrm{d}z_{1}}{z_{1}^{2}}P_{i_{1}\to j_{1}j_{2}}\left(\frac{x_{1}}{z_{1}},\frac{x_{2}}{z_{1}}\right)f^{i_{1}}\left(z_{1}\right)$$

where the $P_{i_1 \rightarrow j_1 j_2}$ are $1 \rightarrow 2$ splitting kernels about which not much is known a priori

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
				•	

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}} = P_{i_{1}\rightarrow j_{1}}\otimes f^{i_{1}}$$

proposed dDGLAP equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}F^{j_{1}j_{2}}=P_{i_{1}\rightarrow j_{1}}\otimes F^{i_{1}j_{2}}+P_{i_{2}\rightarrow j_{2}}\otimes F^{j_{1}i_{2}}+P_{i_{1}\rightarrow j_{1}j_{2}}\otimes f^{i_{1}}$$

Outline	Introduction	Preliminaries	${\sf R}$ en ormalisation	QCD Evolution	Summary
				•	

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}} = P_{i_{1}\rightarrow j_{1}}\otimes f^{i_{1}}$$

proposed dDGLAP equation

$$\frac{\mathrm{d}}{\mathrm{d}\log{(\mu^2)}}F^{j_1j_2} = P_{i_1 \to j_1} \otimes F^{i_1j_2} + P_{i_2 \to j_2} \otimes F^{j_1i_2} + P_{i_1 \to j_1j_2} \otimes f^{i_1}$$

the form of the dDGLAP equation is a generalization of LO and NLO results Kirschner 1979 Ceccopieri 2011,2014

	Outline	Introduction	Preliminaries	${\sf R}$ en ormalisation	QCD Evolution	Summary
					•	
D			00			

DGLAP Equation

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}f^{j_{1}} = P_{i_{1}\rightarrow j_{1}}\otimes f^{i_{1}}$$

proposed dDGLAP equation

$$\frac{\mathrm{d}}{\mathrm{d}\log{(\mu^2)}}F^{j_1j_2} = P_{i_1 \to j_1} \otimes F^{i_1j_2} + P_{i_2 \to j_2} \otimes F^{j_1i_2} + P_{i_1 \to j_1j_2} \otimes f^{i_1}$$

▶ the form of the dDGLAP equation is a generalization of LO and NLO results

Kirschner 1979 Ceccopieri 2011,2014

▶ by comparing our proposed form of the dDGLAP equation to the explicit μ -dependence of the renormalised DPD and using the relations obtained from the validity of the sum rules for renormalised quantities we were able to derive analogous sum rules for the $1 \rightarrow 2$ splitting kernels

 \blacktriangleright comparing the $\mu\text{-dependence}$ of the renormalised DPD to the dDGLAP-equation one finds the following relation

dDGLAP equation for renormalisation factors

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)} Z_{i_{1}^{\prime} \to j_{1}j_{2}}\left(x_{1}, x_{2}\right) = \sum_{i_{1}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{d}z_{1}}{z_{1}} P_{i_{1} \to j_{1}}\left(\frac{x_{1}}{z_{1}}\right) Z_{i_{1}^{\prime} \to i_{1}j_{2}}\left(z_{1}, x_{2}\right) \\ + \sum_{i_{2}} \int_{x_{2}}^{1-x_{1}} \frac{\mathrm{d}z_{2}}{z_{2}} P_{i_{2} \to j_{2}}\left(\frac{x_{2}}{z_{2}}\right) Z_{i_{1}^{\prime} \to j_{1}i_{2}}\left(x_{1}, z_{2}\right) + \sum_{i_{1}x_{1}+x_{2}} \int_{x_{1}}^{1} \frac{\mathrm{d}z_{1}}{z_{1}^{2}} P_{i_{1} \to j_{1}j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{1}}\right) Z_{i_{1}^{\prime} \to i_{1}}(z_{1})$$

 \blacktriangleright comparing the $\mu\textsc{-}dependence$ of the renormalised DPD to the dDGLAP-equation one finds the following relation

dDGLAP equation for renormalisation factors

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)} Z_{i_{1}^{\prime} \to j_{1}j_{2}}\left(x_{1}, x_{2}\right) = \sum_{i_{1}} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{d}z_{1}}{z_{1}} P_{i_{1} \to j_{1}}\left(\frac{x_{1}}{z_{1}}\right) Z_{i_{1}^{\prime} \to i_{1}j_{2}}\left(z_{1}, x_{2}\right) \\ + \sum_{i_{2}} \int_{x_{2}}^{1-x_{1}} \frac{\mathrm{d}z_{2}}{z_{2}} P_{i_{2} \to j_{2}}\left(\frac{x_{2}}{z_{2}}\right) Z_{i_{1}^{\prime} \to j_{1}i_{2}}\left(x_{1}, z_{2}\right) + \sum_{i_{1}x_{1}+x_{2}} \int_{x_{1}}^{1} \frac{\mathrm{d}z_{1}}{z_{1}^{2}} P_{i_{1} \to j_{1}j_{2}}\left(\frac{x_{1}}{z_{1}}, \frac{x_{2}}{z_{1}}\right) Z_{i_{1}^{\prime} \to i_{1}}\left(z_{1}\right)$$

exactly the same structure as the dDGLAP equation, just like in the case of the regular PDF renormalisation factors

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 00		•	

dDGLAP equation for renormalisation factors

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}Z_{i_{1}^{\prime}\rightarrow j_{1}j_{2}}=P_{i_{1}\rightarrow j_{1}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}j_{2}}+P_{i_{2}\rightarrow j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow j_{1}i_{2}}+P_{i_{1}\rightarrow j_{1}j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}}$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 00		•	

dDGLAP equation for renormalisation factors

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}Z_{i_{1}^{\prime}\rightarrow j_{1}j_{2}}=P_{i_{1}\rightarrow j_{1}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}j_{2}}+P_{i_{2}\rightarrow j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow j_{1}i_{2}}+P_{i_{1}\rightarrow j_{1}j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}}$$

In combination with the sum rules for the $1\to 2$ renormalisation factors, this allows to obtain analogous number and momentum sum rules for the new $1\to 2$ splitting kernels

$$\int_{0}^{1-x_{1}} dx_{2} \left(Z_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) - Z_{i_{1} \to j_{1}\overline{j_{2}}}(x_{1}, x_{2}) \right) = \left(\delta_{i_{1},j_{2}} - \delta_{i_{1},\overline{j_{2}}} + \delta_{j_{1},\overline{j_{2}}} - \delta_{j_{1},j_{2}} \right) Z_{i_{1} \to j_{1}}(x_{1}) b$$

$$\sum_{j_{2}} \int_{0}^{1-x_{1}} dx_{2} x_{2} Z_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) = (1-x_{1}) Z_{i_{1} \to j_{1}}(x_{1})$$
	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
'K			00		•	

Consistency Checks

dDGLAP equation for renormalisation factors

$$\frac{\mathrm{d}}{\mathrm{d}\log\left(\mu^{2}\right)}Z_{i_{1}^{\prime}\rightarrow j_{1}j_{2}}=P_{i_{1}\rightarrow j_{1}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}j_{2}}+P_{i_{2}\rightarrow j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow j_{1}i_{2}}+P_{i_{1}\rightarrow j_{1}j_{2}}\otimes Z_{i_{1}^{\prime}\rightarrow i_{1}}$$

Number Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} \left(P_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) - P_{i_{1} \to j_{1}\overline{j_{2}}}(x_{1}, x_{2}) \right) = \left(\delta_{i_{1}, j_{2}} - \delta_{i_{1}, \overline{j_{2}}} - \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) P_{i_{1} \to j_{1}}(x_{1})$$

Momentum Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\sum_{j_2} \int_{0}^{1-x_1} \mathrm{d}x_2 \, x_2 \, P_{i_1 \to j_1 j_2}(\!x_1, x_2) = (\!1 - \!x_1\!) P_{i_1 \to j_1}(\!x_1\!)$$

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 00		•	

Consistency Checks

Number Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} \left(P_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) - P_{i_{1} \to j_{1}\overline{j_{2}}}(x_{1}, x_{2}) \right) = \left(\delta_{i_{1}, j_{2}} - \delta_{i_{1}, \overline{j_{2}}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) P_{i_{1} \to j_{1}}(x_{1})$$

Momentum Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\sum_{j_2} \int_{0}^{1-x_1} dx_2 x_2 P_{i_1 \to j_1 j_2}(x_1, x_2) = (1-x_1) P_{i_1 \to j_1}(x_1)$$

▶ can be used to show stability of the DPD sum rules under QCD evolution

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
U R			0 00 00		○ ●	

Consistency Checks

Number Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\int_{0}^{1-x_{1}} \mathrm{d}x_{2} \left(P_{i_{1} \to j_{1}j_{2}}(x_{1}, x_{2}) - P_{i_{1} \to j_{1}\overline{j_{2}}}(x_{1}, x_{2}) \right) = \left(\delta_{i_{1}, j_{2}} - \delta_{i_{1}, \overline{j_{2}}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) P_{i_{1} \to j_{1}}(x_{1})$$

Momentum Sum Rule for $1 \rightarrow 2$ splitting kernels

$$\sum_{j_2} \int_{0}^{1-x_1} dx_2 \ x_2 \ P_{i_1 \to j_1 j_2}(x_1, x_2) = (1-x_1) P_{i_1 \to j_1}(x_1)$$

- ▶ can be used to show stability of the DPD sum rules under QCD evolution
- as it should already be clear after the proof that the sum rules hold for renormalised quantities, that they are also stable under evolution, this acts as a consistency check for our proposed dDGLAP-equation

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 00			

we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
		0			

- ▶ we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
URI			00			

- ▶ we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- \blacktriangleright in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
U R			0 00 00			

- ▶ we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- \blacktriangleright in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders

Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- \blacktriangleright in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders
- \blacktriangleright this allowed us to derive number and momentum sum rules for the $1 \rightarrow 2$ splitting kernels

	Outline	Introduction	Preliminaries	Renormalisation	QCD Evolution	Summary
UR			0 00 00			

- we showed the validity of the DPD sum rules for bare quantities using a diagramatic approach and LCPT
- we then discussed renormalization and showed that the sum rules are also valid for renormalised quantities
- \blacktriangleright in doing so we derived number and momentum sum rules for the $1 \rightarrow 2$ renormalisation factors
- finally we considered QCD evolution and generalized the dDGLAP-equation to higher orders
- \blacktriangleright this allowed us to derive number and momentum sum rules for the 1
 ightarrow 2 splitting kernels
- ▶ as a consistency check we showed that with our proposed dDGLAP-equation the sum rules are preserved under evolution

LCPT I: Motivation

As an example consider a quark loop in ϕ^3 theory:

LCPT I: Motivation

As an example consider a quark loop in ϕ^3 theory:

In covariant PT the loop is given by

$$\int \frac{\mathrm{d}^D k}{(2\pi)^D} \frac{1}{p^2 - m^2 + i\epsilon} \frac{1}{(p-k)^2 - m^2 + i\epsilon}$$

LCPT I: Motivation

As an example consider a quark loop in ϕ^3 theory:

In covariant PT the loop is given by

$$\int \frac{\mathrm{d}^D k}{(2\pi)^D} \frac{1}{p^2 - m^2 + i\epsilon} \frac{1}{(p-k)^2 - m^2 + i\epsilon}$$

Performing the k^- integration using Cauchy's theorem one finds

$$\int_{0}^{p^{+}} \frac{\mathrm{d}k^{+}}{2\pi} \int \frac{\mathrm{d}^{D-2}\boldsymbol{k}}{(2\pi)^{D-2}} \frac{1}{(2k^{+})(2(p^{+}-k^{+}))} \frac{1}{p^{-} - \frac{\boldsymbol{k}^{2}+m^{2}}{2k^{+}} - \frac{(\boldsymbol{p}-\boldsymbol{k})^{2}+m^{2}}{2(p^{+}-k^{+})} + i\epsilon}$$

LCPT I: Motivation

As an example consider a quark loop in ϕ^3 theory:

Generally the denominator for a state ζ_i between two vertices x_i and x_{i+1} is given by:

$$\frac{1}{P_i^- - \sum_{l \in i} k_{l, \text{ on-shell}}^- + i\epsilon}$$

where P_i is the sum of all external momenta entering the graph before vertex i and the sum is over the on-shell minus momenta of all lines in the state

LCPT II: Rules

- Starting from a given Feynman diagram one has to consider all possible x⁺-orderings of the vertices. In order to visualise these orderings one uses that x⁺ increases from left to right on the lhs of the cut while it increases from right to left on the rhs of the cut.
- ► Coupling constants and vertex factors are the same as in covariant PT.
- \blacktriangleright Plus and transversal momenta, k_l^+ und $m{k}_l$, of a line l are conserved at the vertices
- ► Each line l in a graph comes with a factor $\frac{1}{2k_l^+}$ and a Heaviside function $\Theta(k_l^+)$, corresponding to propagation from lower to higher x^+
- \blacktriangleright For each loop theres an integral over plus and transversal components of the loop momentum $\ell_{\rm i}$

$$\int \frac{\mathrm{d}\ell^+ \mathrm{d}^{d-2}\boldsymbol{\ell}}{(2\pi)^{d-1}}$$

For each state ζ_i between two vertices x_i^+ und x_{i+1}^+ one gets the aforementioned factor

$$\frac{1}{P_i^- - \sum_{l \in i} k_{l, \, \mathrm{on-shell}}^- + i\epsilon}$$

LCPT III: PDF and DPD Definitions in LCPT

PDF

$$\begin{split} f_B^{j_1}(x_1) = &\sum_t \sum_c \sum_o \left(k_1^+\right)^{n_1} \int \!\!\frac{\mathrm{d}k_1^- \mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^D} \Big(\prod_{i=2}^{M(c)} \!\!\frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \Big(\prod_{i=M(c)+1}^{N(t)} \!\!\frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \Big(\{k^+\}, \{\mathbf{k}\}\Big) 2\pi \delta \Big(p^- - k^- - \sum_{i=2}^N k_{i,\mathrm{on-shell}}^- \Big) \delta \Big(p^+ - \sum_{i=1}^N k_i^+ \Big) \end{split}$$

where $n_1 = 1$ if parton 1 is a gluon or a scalar quark, while for Dirac quarks one has $n_1 = 0$.

LCPT III: PDF and DPD Definitions in LCPT

PDF

$$\begin{split} f_B^{j_1}(x_1) = &\sum_t \sum_c \sum_o \left(k_1^+\right)^{n_1} \! \int \! \frac{\mathrm{d}k_1^- \mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^D} \Big(\prod_{i=2}^{M(c)} \! \frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \Big(\prod_{i=M(c)+1}^{N(t)} \! \frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \Big(\{k^+\}, \{\mathbf{k}\} \Big) 2\pi \delta \Big(p^- - k^- - \sum_{i=2}^N k_{i,\mathrm{on-shell}}^- \Big) \delta \Big(p^+ - \sum_{i=1}^N k_i^+ \Big) \end{split}$$

DPD

$$\begin{split} F_B^{j_1 j_2}(x_1, x_2) &= \sum_t \sum_c \sum_o \sum_l \delta_{f(l), j_2} \left(k_1^+ \right)^{n_1} \left(k_2^+ \right)^{n_2} 2p^+ (2\pi)^{D-1} \\ &\times \int \frac{\mathrm{d}k_1^- \mathrm{d}k_l^- \mathrm{d}\Delta^- \mathrm{d}^{D-2} \mathbf{k}_1 \mathrm{d}^{D-2} \mathbf{k}_l}{(2\pi)^{3D}} \Big(\prod_{i=2, \ i \neq l}^{M(c)} \frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \Big(\prod_{i=M(c)+1}^{N(t)} \frac{\mathrm{d}k_i^+ \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} \Big) \\ &\times \Phi_{DPD_{t,c,o}}^{j_1 j_2} \Big(\{k^+\}, \{\mathbf{k}\} \Big) 2\pi \delta \Big(p^- - k_1^- - k_l^- - \sum_{i=2, \ i \neq l}^{M(c)} k_{i, \text{on-shell}}^- \Big) \delta \Big(p^+ - \sum_{i=1}^{M(c)} k_i^+ \Big) \end{split}$$

Proof for bare quantities

LCPT IV: contributing x^+ orderings for PDFs

Consider an arbitrary LCPT PDF graph

Proof for bare quantities

LCPT IV: contributing x^+ orderings for PDFs

Consider an arbitrary LCPT PDF graph

This can be decomposed as

$$\Phi_{PDF} = I F (F_A) I'$$

Proof for bare quantities

LCPT IV: contributing x^+ orderings for PDFs

Consider an arbitrary LCPT PDF graph

This can be decomposed as

$$\Phi_{PDF} = I F (F_A) I'$$

where

$$\begin{split} I &= \prod_{\substack{\text{states } \zeta \\ \zeta < H}} \frac{1}{p^- - \sum_{l \in \zeta} k_{l, \text{ o.s.}}^- + i\epsilon} \qquad I' = \prod_{\substack{\text{states } \zeta \\ \zeta < H'}} \frac{1}{p^- - \sum_{l \in \zeta} k_{l, \text{ o.s.}}^- - i\epsilon} \\ F(F_A) &= \prod_{\substack{\text{states } \zeta \\ H < \zeta < F_A}} \frac{1}{p^- - k^- - \sum_{l \in \zeta} k_{l, \text{ o.s.}}^- + i\epsilon} \prod_{\substack{\text{states } \zeta \\ H' < \zeta < F_A}} \frac{1}{p^- - k^- - \sum_{l \in \zeta} k_{l, \text{ o.s.}}^- - i\epsilon} \\ &\times 2\pi\delta \left(p^- - k^- - \sum_{l \in F_A} k_{l, \text{ o.s.}}^- \right) \end{split}$$

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

Proof for bare qu

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

$$\sum_{F_A} F(F_A) = \sum_{c=1}^{N} \left[\prod_{f=1}^{c-1} \frac{1}{p^- - k^- - D_f + i\epsilon} 2\pi \delta\left(p^- - k^- - D_c\right) \prod_{f=c+1}^{N} \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

where

$$D_f = \sum_{l \in f} k_{l, \text{ on-shell}}^-,$$

LCPT 0000 Proof for bare quantities

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

$$\sum_{F_A} F(F_A) = \sum_{c=1}^{N} \left[\prod_{f=1}^{c-1} \frac{1}{p^- - k^- - D_f + i\epsilon} 2\pi \delta\left(p^- - k^- - D_c\right) \prod_{f=c+1}^{N} \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

rewriting the on-shell δ function as

$$2\pi \,\delta(x) = i \left[\frac{1}{x+i\epsilon} - \frac{1}{x-i\epsilon} \right]$$

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

$$\sum_{F_A} F(F_A) = \sum_{c=1}^{N} \left[\prod_{f=1}^{c-1} \frac{1}{p^- - k^- - D_f + i\epsilon} 2\pi \delta\left(p^- - k^- - D_c\right) \prod_{f=c+1}^{N} \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

rewriting the on-shell δ function as

$$2\pi \,\delta(x) = i \left[rac{1}{x+i\epsilon} - rac{1}{x-i\epsilon}
ight]$$

the above equation becomes

$$\sum_{F_A} F(F_A) = i \left[\prod_{f=1}^N \frac{1}{p^- - k^- - D_f + i\epsilon} - \prod_{f=1}^N \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

$$\sum_{F_A} F(F_A) = \sum_{c=1}^{N} \left[\prod_{f=1}^{c-1} \frac{1}{p^- - k^- - D_f + i\epsilon} 2\pi \delta\left(p^- - k^- - D_c\right) \prod_{f=c+1}^{N} \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

rewriting the on-shell δ function as

$$2\pi \,\delta(x) = i \left[\frac{1}{x+i\epsilon} - \frac{1}{x-i\epsilon} \right]$$

the above equation becomes

$$\sum_{F_A} F(F_A) = i \left[\prod_{f=1}^N \frac{1}{p^- - k^- - D_f + i\epsilon} - \prod_{f=1}^N \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

For $N\geq 2$ this expression vanishes after integration over k^- while for N=1 the on-shell δ function is reproduced.

LCPT IV: contributing x^+ orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible choices for the final state cut F_A . Summing $F(F_A)$ over all cuts one finds the following

$$\sum_{F_A} F(F_A) = \sum_{c=1}^{N} \left[\prod_{f=1}^{c-1} \frac{1}{p^- - k^- - D_f + i\epsilon} 2\pi \delta \left(p^- - k^- - D_c \right) \prod_{f=c+1}^{N} \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

rewriting the on-shell δ function as

$$2\pi \,\delta(x) = i \left[\frac{1}{x+i\epsilon} - \frac{1}{x-i\epsilon} \right]$$

the above equation becomes

$$\sum_{F_A} F(F_A) = i \left[\prod_{f=1}^N \frac{1}{p^- - k^- - D_f + i\epsilon} - \prod_{f=1}^N \frac{1}{p^- - k^- - D_f - i\epsilon} \right]$$

For $N\geq 2$ this expression vanishes after integration over k^- while for N=1 the on-shell δ function is reproduced.

One can thus conclude, that only such x^{\pm} orderings with only one state between the two hard vertices have to be considered.

LCPT V: contributing x^+ orderings for DPDs

Consider now a DPD, which can again be decomposed as

 $\Phi_{DPD} = I_1 I_2 F (F_A) I'_2 I'_1$

LCPT V: contributing x^+ orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$\Phi_{DPD} = I_1 I_2 F (F_A) I'_2 I'_1$$

to be able to use the same argument as before consider the following two x^+ orderings

LCPT V: contributing x^+ orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$\Phi_{DPD} = I_1 I_2 F (F_A) I'_2 I'_1$$

to be able to use the same argument as before consider the following two x^+ orderings

Consider now the states between H_1 and H_2 , I_2 and $ilde{I}_2$

$$I_2 = \frac{1}{p^- - (K^- - k'^-) - D_{I_2} + i\epsilon} \qquad \qquad \tilde{I}_2 = \frac{1}{p^- - k'^- - D_{\tilde{I}_2} + i\epsilon}$$

LCPT V: contributing x^+ orderings for DPDs

Consider now a DPD, which can again be decomposed as

$$\Phi_{DPD} = I_1 I_2 F (F_A) I'_2 I'_1$$

to be able to use the same argument as before consider the following two x^+ orderings

As $k^{\prime-}$ only occurs in these energy denominators we can sum these two x^+ orderings and integrate over $k^{\prime-}$

$$\int \frac{\mathrm{d}k^{-}}{2\pi} \Big[I_{2} + \tilde{I}_{2} \Big] = \int \frac{\mathrm{d}k'^{-}}{2\pi} \left[\frac{2p^{-} - K^{-} - D_{\tilde{I}_{2}} - D_{I_{2}}}{\left(p^{-} - (K^{-} - k'^{-}) - D_{I_{2}} + i\epsilon\right) \left(p^{-} - k'^{-} - D_{\tilde{I}_{2}} + i\epsilon\right)} \right] = -i$$

Repeating the same on the rhs yields a factor of i.

LCPT V: contributing x^+ orderings for DPDs

Consider now a DPD, which can again be decomposed as

 $\Phi_{DPD} = I_1 I_2 F (F_A) I'_2 I'_1$

Thus we can conclude, that summing over the possible orderings of the hard vertices and integrating over $k^{\prime-}$ and $k^{\prime\prime-}$ is tantamount to setting the hard vertices on each side of the final state cut to the same x^+ value

LCPT VI: updated PDF and DPD definitions

PDF and DPD definitions

$$\begin{split} f_B^{j_1}(x_1) &= \sum_t \sum_c \sum_o \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \Big(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \Big) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{\mathbf{k}\} \right) \delta \Big(1 - \sum_{i=1}^{M(c)} x_i \Big) \end{split}$$

$$\begin{split} \int_{0}^{1-x_{1}} & dx_{2} F_{B}^{j_{1}j_{2}}(x_{1}, x_{2}) = \sum_{t} \sum_{c} \sum_{o} \sum_{l} \delta_{f(l), j_{2}} \left(x_{1} p^{+} \right)^{n_{1}} 2p^{+} \int \frac{\mathrm{d}^{D-2} \mathbf{k}_{1}}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}x_{i} \mathrm{d}^{D-2} \mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \right) \\ & \times \left(x_{l} p^{+} \right)^{n_{l}} \Phi_{DPD_{t,c,o}}^{j_{1}j_{2}} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i} \right) \end{split}$$

 $1 - x_1$

Proof for bare quantities

LCPT VI: updated PDF and DPD definitions

PDF and DPD definitions

×
$$(x_l p^+)^{n_l} \Phi_{DPD_{t,c,o}}^{j_1 j_2} (\{x\}, \{k\}) \delta \left(1 - \sum_{i=1}^{M(C)} x_i\right)$$

Comparing these expressions, one finds that the rhs is basically the same (neglecting the sum over l) if one can show that

$$2(x_l p^+)^{n_l} \Phi_{DPD_{t,c,o}}^{j_1, j_2} = \Phi_{PDF_{t,c,o}}^{j_1}$$

Number Sum Rule

Assuming we have shown that $2(x_l p^+)^{n_l} \Phi_{DPD_{t,c,o}}^{j_1, j_2} = \Phi_{PDF_{t,c,o}}^{j_1}$ the number sum rule can be rewritten as

$$\begin{split} &\sum_{t} \sum_{c} \sum_{o} \sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) (x_{1} p^{+})^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \mathbf{k}_{1}}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}x_{i} \mathrm{d}^{D-2} \mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_{1}} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i} \right) \\ &= \left(N_{j_{2v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) \sum_{t} \sum_{c} \sum_{o} \left(x_{1} p^{+} \right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \mathbf{k}_{1}}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}x_{i} \mathrm{d}^{D-2} \mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_{1}} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i} \right) \end{split}$$

Number Sum Rule

Assuming we have shown that $2(x_l p^+)^{n_l} \Phi_{DPD_{t,c,o}}^{j_1,j_2} = \Phi_{PDF_{t,c,o}}^{j_1}$ the number sum rule can be rewritten as

$$\begin{split} &\sum_{t} \sum_{c} \sum_{o} \sum_{l} \left(\delta_{f(l), j_{2}} - \delta_{f(l), \overline{j_{2}}} \right) (x_{1} p^{+})^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \mathbf{k}_{1}}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}x_{i} \mathrm{d}^{D-2} \mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_{1}} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i} \right) \\ &= \left(N_{j_{2v}} + \delta_{j_{1}, \overline{j_{2}}} - \delta_{j_{1}, j_{2}} \right) \sum_{t} \sum_{c} \sum_{o} \left(x_{1} p^{+} \right)^{n_{1}} p^{+} \int \frac{\mathrm{d}^{D-2} \mathbf{k}_{1}}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d}x_{i} \mathrm{d}^{D-2} \mathbf{k}_{i}}{(2\pi)^{D-1}} p^{+} \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_{1}} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_{i} \right) \end{split}$$

which reduces to

$$\sum_{l} \left(\delta_{f(l), j_2} - \delta_{f(l), \overline{j_2}} \right) = \left(N_{j_2} + \delta_{j_1, \overline{j_2}} - \delta_{j_1, j_2} \right)$$

Momentum Sum Rule

For the momentum sum rule one analogously finds

$$\begin{split} &\sum_{j_2} \sum_t \sum_c \sum_o \sum_l \delta_{f(l), j_2} \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \right) \\ &\times x_l \, \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_i \right) \\ &= (1-x_1) \sum_t \sum_c \sum_o \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_i \right) \end{split}$$

Proof for bare quantities

Momentum Sum Rule

For the momentum sum rule one analogously finds

$$\begin{split} &\sum_{j_2} \sum_t \sum_c \sum_o \sum_l \delta_{f(l), j_2} \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \right) \\ &\times x_l \, \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_i \right) \\ &= (1 - x_1) \sum_t \sum_c \sum_o \left(x_1 \, p^+ \right)^{n_1} p^+ \int \frac{\mathrm{d}^{D-2} \mathbf{k}_1}{(2\pi)^{D-1}} \left(\prod_{i=2}^{N(t)} \frac{\mathrm{d} x_i \mathrm{d}^{D-2} \mathbf{k}_i}{(2\pi)^{D-1}} p^+ \right) \\ &\times \Phi_{PDF_{t,c,o}}^{j_1} \left(\{x\}, \{k\}\} \right) \delta \left(1 - \sum_{i=1}^{M(c)} x_i \right) \end{split}$$

using a shorthand notation for the integration measures

$$\int \mathcal{D}_{a}^{b}[x_{i}] = \prod_{i=a}^{b} \int_{0}^{1} \mathrm{d}x_{i} p^{+} \qquad \int \mathcal{D}_{a}^{b}[\mathbf{k}_{i}] = \prod_{i=a}^{b} \int \frac{\mathrm{d}^{D-2}\mathbf{k}_{i}}{(2\pi)^{D-1}},$$

Proof for bare quantities

Momentum Sum Rule

this can be rewritten as

$$\sum_{t} \sum_{c} \sum_{o} \sum_{l} (x_{1} p^{+})^{n_{1}} p^{+} \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1 - x_{1}) \sum_{t} \sum_{c} \sum_{o} (x_{1} p^{+})^{n_{1}} p^{+} \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$

Proof for bare quantities

Momentum Sum Rule

this can be rewritten as

$$\sum_{t} \sum_{c} \sum_{o} \sum_{l} (x_{1} p^{+})^{n_{1}} p^{+} \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1 - x_{1}) \sum_{t} \sum_{c} \sum_{o} (x_{1} p^{+})^{n_{1}} p^{+} \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1 - \sum_{i=1}^{M(c)} x_{i}\right)$$

which reduces to

$$\sum_{l} \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] x_{l} \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)$$
$$= (1-x_{1}) \int \mathcal{D}_{2}^{N(t)}[x_{i}] \mathcal{D}_{1}^{N(t)}[\boldsymbol{k}_{i}] \Phi_{PDF_{t,c,o}}^{j_{1}}(\{x\},\{\boldsymbol{k}\}) \delta\left(1-\sum_{i=1}^{M(c)} x_{i}\right)$$