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> can be interpreted in terms of Feynman diagrams, e.g.
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=>

Use light-front perturbation theory to show the equivalence between PDF and DPD

5/14



Outline Introduction Renormalisation QCD Evolution Summary
o]

[e]

Steps towards a proof for bare quantities

6/14



Outline Introduction Renormalisation QCD Evolution Summary
o]

[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a PDF graph have to be considered,
where there is only one state between the two hard vertices

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a PDF graph have to be considered,
where there is only one state between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same xzT-value

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a PDF graph have to be considered,
where there is only one state between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same =T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a PDF graph have to be considered,
where there is only one state between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same =T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, PI6BI, Schafer 2016

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

. " ~2k, YO dz,dP -2k,
5 (@) ZZZ(”””#) P / (2m)P~ 1(1:[2 (2m)P-1 »)

M(e)

x®8pp, ., {2} {k})5(1 =2 x,)

i=1

. N dP-2g; N 4g.qaD-2p;

M(c)

x @)™ eB%y, (e} (kD) (1— Z :c)

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a given PDF graph have to be
considered, where there is only one "state" between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same 2T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, PI6BI, Schifer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the
following relation:

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a given PDF graph have to be
considered, where there is only one "state" between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same 2T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, PI6BI, Schifer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the
following relation:

+)"l I, J2 2 i1

2@p DPDy¢ co — ‘I)PDFt,c,o

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a given PDF graph have to be
considered, where there is only one "state" between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same 2T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, PI6BI, Schifer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the
following relation:

+)"l I, J2 2 i1

2@p DPDy¢ co — ‘I)PDFt,c,o

(obtained from integrating a jij2-DPD over the momentum fraction of parton 2 and
comparing the result to a j1-PDF)

6/14



Outline Introduction Renormalisation QCD Evolution Summary

[e]
[e]

Steps towards a proof for bare quantities

> after a sum over cuts, only such LC orderings of a given PDF graph have to be
considered, where there is only one "state" between the two hard vertices

» performing the integrations over the minus momenta of the two active partons in a DPD
is tantamount to setting them to the same 2T -value

> thus for DPDs also only such LC orderings with only one "state" between the two hard
vertices have to be considered

cf. Diehl, Gaunt, Ostermeier, PI6BI, Schifer 2016

Main ingredient for the proof that the sum rules hold for bare quantities is to show the
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(obtained from integrating a jij2-DPD over the momentum fraction of parton 2 and

comparing the result to a j1-PDF)

Careful ananlysis of the LCPT expressions 7372 and &% 1. shows that this is indeed
t,c,o ~ t,c,o

the case
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1—xo 11—z

1
- dz1 dza 1 T2 i14
FI92 (g1, 20) = E / ? ZZZ»I_,]-I (Z Zig—sja P Fglz (21,22)

1,82 4 Zo

1
dz1 T1 T2\ .
+Z / 1,1—>j1j2 (757) Bl(zl)

zZ1 22
Nz day

with the new renormalisation factors Z;, _.;, j,, which are in MS-renormalisation given by

g o Bt | o (Zinoiiga22 | Zivoiigai2l
i1—j1j2 — Qs - + ag =2 + =2 +...,
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Finally we define a inverse PDF renormalisation factor Z, , e

obeying

d'u,l T
Z/ 21711 (a) Ziy, gy (1) = 6 5, 6 (1 — 1)

1 gy
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Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced
before, we find
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Subtracting the rhs of the number sum rule from the lhs and using the definitions introduced
before, we find
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0
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where R'(z1,u1) is given by
R (z1,u1) =
dzl LY |z ) —s(1-2)s 5 5 5 5
Z l1—>i1 uil i1—j1 ?1 - _Z 01,1 (il,ﬁ_ i1,J2 jl,E+ jlst)
11 21
_z
z1
T 1
+ / dusg (Zilajljg (z, u2) — 2 i (Z, uz))
0
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0

i@
> lhs of the above equation is finite for ¢ = 0 as it’s the difference of renormalised quantities
» thus the same holds for the rhs, i.e. all poles in € in R’ have to cancel

> as we subtracted the treelevel term from Z;, _.;, in R’ it does not contain any terms that
are finite for e =0

» i.e. R =0, such thatie number sum rule holds for MS-renormalised quantities (can
easily be extended to MS-renormalisation)

As we now know that R’ = 0 we can derive the following relation between the renormalisation
factors for the inhomogeneous term and the regular PDF renormalisation factors

1—2;

/dwz (Zi1—>j1j2 @, 2)—2Z; ;@ 962)) = (51'1,12 —5i1,g+5j1,5—5n,j2) Ziy—j, @1)
0
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Momentum Sum Rule

Repeating the same for the momentum sum rule one finds
1-21 1
192 i dur i
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Momentum Sum Rule

Repeating the same for the momentum sum rule one finds

1—x1

Z / dwg 22 FI192 (21, 22) — (1 — 21) f71 (21) = Z/ du £ (u1) R (z1,u1)
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where R(z1,u1) is given by
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Ror, ) = Z/ i () [(Bon (2) =0 (-2 )20
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1
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Momentum Sum Rule

Repeating the same for the momentum sum rule one finds

1—z1 1
Z / dzg 2o FI192 (11, 29) — (1 — 21) f71 (21) = Z/du—ullfill (u1) R(z1,u1)

1 ’
J2 0 11wy

Using the same reasoning as in the case of the number sum rule one can thus conclude, that
also the momentum sum rule holds for renormalised quantities. The constraint, that R =0
yields the follwing relation between Z;, _,;, , and Z;, .,

1—zq

> / dxo 32 Zi) 5, @1, T2) = (L —21) Ziy -5y @1)
Jj2 o
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1 gy

dlog (u

where P;, _,;, are the well known DGLAP splitting kernels.
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QCD evolution of PDFs and DPDs

d

Tog (! = Pan @S

1—zo

d . dzl x1 L
FI192 (g1 1) = / (2R pade (y g
d]og('u,Q) ( 1, 2) ;z 21 ’L1—>]1(zl) ( 1, 2)
1

dz a2 dz T T
+2/ O s (22) 5 (a1, 20) + 5 / lpwm( 22 )
z2

zZ1
gy tay

where the P;, ; ;, are 1 — 2 splitting kernels about which not much is known a priori
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> the form of the dDGLAP equation is a generalization of LO and NLO results
Kirschner 1979
Ceccopieri 2011,2014
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QCD evolution of PDFs and DPDs

d . .
Tog () = Paman @7
d J12 i1 jiiz i1
WF =P, ®F + Piy o @ F' + P i1jo @ f

> the form of the dDGLAP equation is a generalization of LO and NLO results
Kirschner 1979
Ceccopieri 2011,2014

> by comparing our proposed form of the dDGLAP equation to the explicit p-dependence of
the renormalised DPD and using the relations obtained from the validity of the sum rules
for renormalised quantities we were able to derive analogous sum rules for the 1 — 2
splitting kernels
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» comparing the p-dependence of the renormalised DPD to the dDGLAP-equation one
finds the following relation

1—xo
d dzy z1
Wzi'l—)jljz (w1, 22) = %: / ?P’il—’jl (Z) Zi’1—>i1j2 (21,22)
z1
1— zld
z9 b2} 1 T2
+Z/ Plz—mz( ) i _”112@1,22)—}—2 / P11—>3132( el )Zz’l—nl(zl)
12 zg

ey by
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» comparing the p-dependence of the renormalised DPD to the dDGLAP-equation one
finds the following relation

1—xo

d dzy z1

g gy oo (1072) = 2 [ S (51) B G122
z1
1— zld
z9 b2} 1 T2

+Z/ Plz—mz( ) i —>J112(w1722)+2 / PZ1—>3132( el )Zz’l—nl(zl)

12 g4

ey by

> exactly the same structure as the dDGLAP equation, just like in the case of the regular
PDF renormalisation factors
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Wzill_’jljZ =Py -5 ® Zi’1—>i1j2 + Pi2—>j2 ® Zi’1—>j1i2 + Pi1—>j1j2 ® Zi'l—n'l

In combination with the sum rules for the 1 — 2 renormalisation factors, this allows to obtain
analogous number and momentum sum rules for the new 1 — 2 splitting kernels

1—x

/dxz (Zz‘l—mjz @1, 22) =2, 5 55, xz)) = (61-1,12 —5il,g+5j1,g—5jl,jz) Ziy -5, @) b
0

11—z

Z/dww'z Ziy =142 @1, m2) =1 —21) Z35) 5, @1)
Jj2 o
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0
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0

11—z,
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> can be used to show stability of the DPD sum rules under QCD evolution
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Consistency Checks
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/dw (Pz‘l—n‘ljz @1, 22) =By 5,701, 902)) = (5i1,j2 =0, 2105, ,5—51‘1,]‘2) Piy—jy @1)
0

1—xq

Z/dx2x2Pi1—>j1j2(x17x2):(1_*771)Pi1—>j1(xl)
Jj2 o

> can be used to show stability of the DPD sum rules under QCD evolution

> as it should already be clear after the proof that the sum rules hold for renormalised
quantities, that they are also stable under evolution, this acts as a consistency check for
our proposed dDGLAP-equation
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Summary

> we showed the validity of the DPD sum rules for bare quantities using a diagramatic
approach and LCPT

» we then discussed renormalization and showed that the sum rules are also valid for
renormalised quantities

> in doing so we derived number and momentum sum rules for the 1 — 2 renormalisation
factors

» finally we considered QCD evolution and generalized the dDGLAP-equation to higher
orders

> this allowed us to derive number and momentum sum rules for the 1 — 2 splitting kernels

> as a consistency check we showed that with our proposed dDGLAP-equation the sum
rules are preserved under evolution
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LCPT I: Motivation

As an example consider a quark loop in ¢3 theory:

Y
)

p

a8
N

In covariant PT the loop is given by

/ dPk 1 1
(2m)P p2 —m2 +ie (p — k)2 — m2 +ie

Performing the k™~ integration using Cauchy’s theorem one finds

/dk+/ dP—2g 1 1
D—-2 + + _ Lkt _ 24 m?2 —k)24m?2 .
(2mP=2 @) EpT — k1) p- — Ebmd _ GoRTn?
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Proof for bare quantities
0000000 [e]e)

LCPT I: Motivation

As an example consider a quark loop in ¢3 theory:

Generally the denominator for a state (; between two vertices z; and z;41 is given by:

1
P =3 1ci Bl on—shen T i€

where P; is the sum of all external momenta entering the graph before vertex ¢ and the sum is
over the on-shell minus momenta of all lines in the state
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Proof for bare quantities
(o] lelelele]e] [e]e)

LCPT Il: Rules

> Starting from a given Feynman diagram one has to consider all possible =+ -orderings of
the vertices. In order to visualise these orderings one uses that =1 increases from left to
right on the |hs of the cut while it increases from right to left on the rhs of the cut.

» Coupling constants and vertex factors are the same as in covariant PT.

» Plus and transversal momenta, kl+ und k;, of a line [ are conserved at the vertices

» Each line [ in a graph comes with a factor —. and a Heaviside function @(kl'"),
2k,

corresponding to propagation from lower to higher z+
> For each loop theres an integral over plus and transversal components of the loop
momentum £:
detdd—2e
(27r)d71

+

> For each state (; between two vertices z;” und a::r_H one gets the aforementioned factor

1
P =3 2ci Kl on—shen T i€
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LCPT Ill: PDF and DPD Definitions in LCPT

: ny fdkydP=2ky TOdkFdP 2k, YP dkFdP-2k,
e =223 (1) [ ([T )( :
t c o

(2m)P iy (2m)P—l e (2m)P-1 )
) N N
x O, . (1 RY)276 (0™ = K7 = Y k7 e )8 (PF = DKF)
i=2 i=1

where n; = 1 if parton 1 is a gluon or a scalar quark, while for Dirac quarks one has n; = 0.
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t @ o =2 i=M(c)+1

X q)golDFth,o ({k+}7 {k}) 27‘—6(17_ —k7 = ik;on—shell)é(p+ - i kj_)
i=2 =1

op0—— ]
ngz (z1,22) = Z Z Z Z‘sf(l),h (ki“)"l (k;r)ng 2pt(2m)P—1
t ¢ o ]

/dkl_dkl_dA_dD—2k1dD_2kl/ M) g FaP -2k, ]ﬁ) dkj—dD_Qki)
« dk;/d” " "k;
(2m)3P i=2, il (2m)P-t i=M(c)+1 (2m)P=1
N M(e) M(e)
X q)%gDZDtYCYO ({kJr}’ {k})2ﬂ-6(p7 - k; - k; - Z k;on—shell)é(er - Z kj)
i=2, il i=1
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LCPT IV: contributing =1 orderings for PDFs
Consider an arbitrary LCPT PDF graph

Fy
|
! . This can be decomposed as
| Spprp =1 F(Fa) I'
I | I
F(Fp)
where
1 1
= |1 , = 1] -
states r- Zle( l,0.s. + e states p- Ele( 1,0.s. — €
(<H ¢<H'

F(Fa)= [ —— : = =~ ]I — :

states ¢ pT—kT - Zle( kl,o‘s. +e states pT—kT - ZIGC kl_,o.s. — i€
H<(<Fy H'<(<Fa

xomd | pm —k™ = > k.
IEF,
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LCPT IV: contributing =1 orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible
choices for the final state cut F4. Summing F'(F4) over all cuts one finds the following
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c—1 1 1
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LCPT IV: contributing =1 orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible
choices for the final state cut F4. Summing F(F4) over all cuts one finds the following

c—1 1 1
SR (Fa) = > Il 5,75 7=k - Do) H kD i

c=1 [ f=1 P =c+1 p

rewriting the on-shell ¢ function as

o o(a) =i | —— — 1]

T +1i€ T — i€
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LCPT IV: contributing =1 orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible
choices for the final state cut F4. Summing F(F4) over all cuts one finds the following

c—1

1 1
ZF(FA) Z [l ——F 20 -k -D) H e S P
== r — k== Dy +ic fmer1 P k== Dy —ie
rewriting the on-shell ¢ function as
1 1
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the above equation becomes
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LCPT IV: contributing =1 orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible
choices for the final state cut F4. Summing F(F4) over all cuts one finds the following

c—1

1 1
ZF(FA) Z Il ——F5 52—k = D) H T h——D: —ic
= lep — k== Dy +ic c_Hp k== Dy —ie
rewriting the on-shell ¢ function as
1 1
2w §(x) :i[ — — - ]
x + 1€ T — 1€
the above equation becomes
~ 1 ~ 1
F(Fy) =i —— — — — ;
;A: fl;Ilp — k= — Dy +ie fl;Ilp — k= — Dy —ie

For N > 2 this expression vanishes after integration over k— while for N =1 the on-shell §
function is reproduced.
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LCPT IV: contributing =1 orderings for PDFs

Assuming that there are N distinct states between H and H' there are thus also N possible
choices for the final state cut F4. Summing F(F4) over all cuts one finds the following

c—1 1 1
F(Fy) = . —k =D e ——
Z (Fa) = cz_:l fl_-[zlp*—k*—Df-i-Z o (p °) ]‘:‘E_lp — k== Dy —ic

rewriting the on-shell ¢ function as

27r5(x):i[ Lo 1.]

T + 1€ T — 1€

the above equation becomes

=~ 1 X 1
F(Fq) =i —— — — —— .
;A: fl;Ilp — k= — Dy +ie fl;Ilp — k= — Dy —ie

For N > 2 this expression vanishes after integration over k— while for N =1 the on-shell §

function is reproduced.
One can thus conclude, that only such =1 orderings with only one state between the two hard

vertices have to be considered.
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LCPT V: contributing = orderings for DPDs

Consider now a DPD, which can again be decomposed as
@ppp =l I2 F(Fa) I3 I}
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LCPT V: contributing = orderings for DPDs
Consider now a DPD, which can again be decomposed as
Sppp =l I F(Fa) I, T,
to be able to use the same argument as before consider the following two =1 orderings
Fy Fa

I I | I I Iy I, i I I
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LCPT V: contributing = orderings for DPDs
Consider now a DPD, which can again be decomposed as
Sppp =l I F(Fa) I, T,
to be able to use the same argument as before consider the following two =1 orderings

Fa

Consider now the states between Hy and Hs, I and Io

1 ~ 1
I = : I =
p~ — (K~ —k'~) — Dy, +ie
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Proof for bare quantities
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LCPT V: contributing = orderings for DPDs
Consider now a DPD, which can again be decomposed as
Sppp =l I F(Fa) I, T,
to be able to use the same argument as before consider the following two =1 orderings

Fa

As k'~ only occurs in these energy denominators we can sum these two =T orderings and
integrate over k'~

dk~ < dk'~ 2p” — K~ —-D; — Dy
/—[124-12]:/ L 2 =—1
2w 20 | (p~— (K~ k'~) — Dy, + ic) (p—— K~=—D;, + ie)

Repeating the same on the rhs yields a factor of i.
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Proof for bare quantities
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LCPT V: contributing = orderings for DPDs
Consider now a DPD, which can again be decomposed as
Sppp =l I2 F (Fa) I} I]
Thus we can conclude, that summing over the possible orderings of the hard vertices and

integrating over &'~ and k"~ is tantamount to setting the hard vertices on each side of the
final state cut to the same = value
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Proof for bare quantities
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LCPT VI: updated PDF and DPD definitions

) il dP—2k N“)d.idD_zki
fﬁl(x1)=zt:¥zo:(x1p+) P+/(27T)D_11(H g(c%_)D_l P+)

i=2
M(c)

X OPpp ({m},{k})é(l -3 m)
=il

i=

11—z _ N (t) _
. n dP—2p, dz;dP—2k;
[, =SS o)™ 20" i (I 5 mrs)

M(c)
x @) B, (kD a(1- Y @)
i=1



Proof for bare quantities
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LCPT VI: updated PDF and DPD definitions

) n1 ap-2, N9 g ;AP 2k,
b EE Sl (]

(=
M (c)

X OPpp ({m},{k})é(l -3 z)

=1

i=

11—z _ N (t) _
. n dP—2p, dz;dP—2k;
[, =SS o)™ 20" i (I 5 mrs)

M(c)
x @) B, (kD a(1- Y @)
i=1

Comparing these expressions, one finds that the rhs is basically the same (neglecting the sum
over [) if one can show that

U g d1, 02 _ &1
2 (xlp ) q’DPDt,m = (I)PDFt,C,O



LCPT
0000000

Number Sum Rule

; )\ @Il J2 _ i1
Assuming we have shown that 2 (xlp ) (DDPDt,c,o (bPDFt,c,o the number sum rule can

be rewritten as

n dD—Zk N(t) d AdD—2k.
S S (b0 b 2) (1) [ s (H rd” 2
t c o l

(27T)D71 s (27T)D71

i=1

] M (c)
X ‘I’ﬁppt,c,o ({=}, {k}) 0o (1 - Z wz)

" dD72k N<t)d _dezk.
:(szv+6J’1,E_6j1»j2)2t:22(w1p+) 1p+/(27l.)D—11 (].:.[2 = lp+

(2m)b-1

) M (c)
X QJP}DFMCYO ({z},{k}) o (1 - Z ml)
i=1
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; )\ @Il J2 _ i1
Assuming we have shown that 2 (xlp ) (DDPDt,c,o (bPDFt,c,o the number sum rule can

be rewritten as

n dD—Zk N(t) d AdD—2k.
S S (b0 b 2) (1) [ s (H rd” 2
t c o l

(27T)D71 s (27T)D71

i=1

] M (c)
X ‘I’ﬁppt,c,o ({=}, {k}) 0o (1 - Z wz)

" dD72k N<t)d _dezk.
:(szv+6J’1,E_6j1»j2)2t:22(w1p+) 1p+/(27l.)D—11 (].:.[2 = lp+

(2m)b-1

M (c)
X (P%DFt,c,o ({=},{k}) o (1 - Z mz)
i=1
which reduces to

Z (af(l)dz o 61’(1)5) - <\72L +(5m.72 - 6;7|-J‘2>

l
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Momentum Sum Rule

For the momentum sum rule one analogously finds
n dD 2’{} N(t) d(l?‘dD_zk:i N
ZZZZZ‘W) jo (@1p™)" p* -
s (2m)

‘ M (c)
@ ¥ () (kD)6 (1 - w)

i=1

- ®) 4o dP—2k;
1—531)222(95112*) P /(27r)D 1 (H2 (2m)P-1 p+)
M(c)
x ‘P%DFt ({z},{k})d (1 — Z mz>

=1
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Momentum Sum Rule

For the momentum sum rule one analogously finds

n dP—2k; (YY) dz,dP—2k,
SEEE S [ i (14t
jo2 t ¢ o 1 i=2

i=1

M (c)
@ ¥ () (kD)6 (1 - w)

- ) 4z;dD—2k;
~1-m S )" [ s <HQ 2myP p+)

=1

M(c)
x q};’lDFt ({x}v{k})(s (1 - Z wz>

using a shorthand notation for the integration measures
b b ! + b daP 2k
/Da[mi]:g/(; dz; p /D k]_H/(Qﬂ.)Dl’
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Momentum Sum Rule

this can be rewritten as

M (c)
EZZZ (@)t (DY V1w DY Vi) w1 03, ({2}, (kD) ( sz)

M(c)
=(1—z1) ZZZ(ml pT) " pT Dév(t) [z4] Djlv(t) [k:] "p]PlDFt . Lzt {k}) 6 (1— Z xz>
t ¢ o

=1
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0000000

Momentum Sum Rule
this can be rewritten as
M(c)
ZZZZ (w1pt)"p* (DY O DY Olkei] 21 @3, ({2}, (kD)6 Zx@

M(c)
=(1—z1) ZZZ(ml pT) " pT Dév(t) [z4] Djlv(t) [k:] "p]PlDFt . Lzt {k}) 6 (1— Z xz>
t ¢ o

=1

which reduces to

. ‘ M(c)
Z/n;\*(o (2] DY D] 2y @ (), (kD)0 (1 3 r)
1

o ) M(c)
—(1-21) /D;\“(”[MD?“’[ i1 ®8pp, , (o} {k})o ( _ )
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