<u>MPI San Cristobal de las Casas — Klaus Werner — Subatech — Nantes</u> 1

Monte Carlos for pp Scattering:

An Overview

Klaus Werner, Philip J. Ilten

with contributions from T. Pierog, S. Ostapchenko, C. Bierlich, F. Riehn, P. Tribedy, A. Fedynitch.

model	Gribov	Dipole	Facto	authors
	Regge		risation	
QGSJETII	Х			Ostapchenko
EPOSLHC	Х			Pierog, Werner
EPOS3	Х			Werner, Pierog
DIPSY		Х		Flensburg, Bierlich
IP-Glasma		Х		Tribedy
SIBYLL			Х	Engel, Riehn
DPMJETIII			Х	Engel, Fedynitch
PYTHIA			Х	
HERWIG			Х	

To discuss: Intial state treatment / non-linear effects

Multiple scattering

Gribov-Regge multiple scattering approach

S-Matrix based on Pomerons

Pomerons : Parton ladders (initial and final state radiation, DGLAP)

Cutting rules to get inelastic cross sections.

Same principle for AA

Explicite formulas for cross sections

(even partial cross sections)

<u>MPI San Cristobal de las Casas — Klaus Werner — Subatech — Nantes</u> 5

Soft evolution, remnants

□ Remnants □

 \Box Partonic final state => strings

 \Box EPOS: high string density => core => hydro

Nonlinear effects in **QGSJET**

Pomeron-Pomeron coupling

- □ Summing of **all orders**
- \Box No energy conservation
- $\hfill \mbox{(in EPOS full energy conservation, but effective treatment of nonlinear effects)}$

Nonlinear effects in EPOS

Parton-ladders⁽¹⁾ are perfectly fitted⁽²⁾ as $G = \alpha (x^+)^{\beta} (x^-)^{\beta}$. *G* depends on the vituality cutoff: $G = G(Q_0)$.

To mimic the effects of gluon fusion, the fits are modified as $\alpha (x^+)^{\beta} (x^-)^{\beta+\varepsilon}$, referred to as G_{eff} .

The exponent $\varepsilon = \varepsilon(s)$ is chosen to reproduce the energy dependence of cross sections.

(1) Imaginary part *G* of the corresponding amplitude in *b*-space (2) x^+, x^- : light cone momentum fractions of the Pomeron end

Adding an exponent ε

□ **must** be accompanied by a corresponding modification of the internal structure of the Pomeron

This can be done by defining a **saturation scale** Q_s via

$$G_{\rm eff} = kG(Q_s)$$

and then considering the parton ladder with the cutoff Q_s (thus changing the internal structure! => consistent!)

We find (with $x = x^+x^-$ being the energy fraction of the Pomeron)

$$Q_s = Q_s(x) \propto x^{0.30}$$

Dipole approach

Initial state radiation in DIPSY (from Christian Bierlich)

Initial nucleon: Three dipoles

LL BFKL in *b*-space + corrections: A dipole (\vec{x}, \vec{y}) can emit a gluon at position \vec{z} with probability (*P*) per unit rapidity (*Y*)

$$\frac{dP}{dY} = \frac{\bar{\alpha}}{2\pi} d^2 \vec{z} \frac{(\vec{x} - \vec{y})^2}{(\vec{x} - \vec{z})^2 (\vec{z} - \vec{y})^2}$$

Multiple scattering

Multiple color exchange between dipoles i and jwith probabilities

$$\frac{\alpha_s^2}{4} \left[\log \left(\frac{(\vec{x}_i - \vec{y}_j)^2 (\vec{y}_i - \vec{x}_j)^2}{(\vec{x}_i - \vec{x}_j)^2 (\vec{y}_i - \vec{y}_j)^2} \right) \right]^2$$

-> kinky strings

- □ Two "leading" strings
- Additional strings from loops
- **No Remnants**

Many strings: Lund strings may overlap

=> color ropes (Larger eff. string tension) Initial state in IP-Glasma (from Prithwish Tribedy)

IP-Sat dipole model (r_{\perp} =dipole size):

$$\frac{d\sigma}{d^2b} = 2 \left[1 - \exp\left(-F(r_{\perp}, x, b) \right], \ F \propto r_{\perp}^2 \alpha_s(\mu^2) x g(x, \mu^2) T(b) \right]$$

T(b) : Gaussian profile, $\mu^2=4/r_{\perp}^2+\mu_0^2,\,xg$: DGLAP evolution

Saturation scale Q_s defined via

$$F\left(r_{\perp}, x = \frac{2}{Q_s^2}, b\right) = \frac{1}{2}$$

IP-Glasma: Color charge squared for projectile A and target B :

 $g^2 \mu_A^2 = \sum_{nucleons} g^2 \mu_i^2$, with $g^2 \mu_i^2 \propto Q_s^2$ with Q_s^2 from IP-Sat model.

Multiple Scattering

Color charge density $\rho_{A/B}$

generated from Gaussian distribution with variance $g^2 \mu_A^2$ (contains DGLAP, saturation)

Current

 $J^
u = \delta^{
u \pm}
ho_{A/B}(x^{\mp}, x_{\perp})$

Field from $[D_{\mu}, F_{\mu\nu}] = J_{\nu}$ Numerical (lattice) solution, fields can be expressed in terms of initial ones: $A^{i} = A^{i}_{A} + A^{i}_{B}, A^{\eta} = \frac{ig}{2}[A^{i}_{A}, A^{i}_{B}]$

Multiple scattering:

Nonlinearity in terms of *A*: Infinite number of $g + g \rightarrow g$ processes

$\textbf{Fields} {\rightarrow} \textbf{Gluons} {\rightarrow} \textbf{Pythia strings}$

Models based on factorization

First step: Generation of partons according to (1)

Second step: Multiple scattering scheme via eikonal formula

$$prob(n) = \frac{\left[\sigma_{jet}(s) T(s, b)\right]^n}{n!} \exp\left(-\sigma_{jet}(s) T(s, b)\right)$$

Multiple scattering in SIBYLL From F. Riehn

Multiple scattering via eikonal model with soft and hard component

 \Box No Remnants

 Further scatterings
 => strings between gluon pairs

Saturation scale from

Some results

DIPSY, EPOS LHC

(not presented here)

Plots provided by from Christian Bierlich and Tanguy Pierog

<u>MPI San Cristobal de las Casas — Klaus Werner — Subatech — Nantes</u> 16

Data by ATLAS, many more comparisons at http://home.thep.lu.se/DIPSY

