Bulk observables in small colliding systems combining CGC and PYTHIA

Prithwish Tribedy
BRODKHRNEN
NATIONAL LABORATORY

8th international workshop on MPI@LHC

Nov 28-Dec 2, San Cristóbal de las Casas, Chiapas, México

Outline

High-multiplicity

Observation in high-multiplicity $p+p \& p+A$ events \rightarrow similar to $A+A$
(Often regarded as signature of collectivity)
Goal : Model multi-particle production in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{A}$

- A framework of particle production at high \sqrt{s}
- State-of-the art treatment of hadronization

Hadrons at high energies : gluon saturation

High energies \rightarrow Regge Gribov limit $\sqrt{s} \rightarrow \infty, x \rightarrow 0$: gluon saturation

- Non-linear processes stop growth of gluons, emergence of saturation scale $Q_{S}(x)>\Lambda_{Q C D}$

Hadrons at high energies : gluon saturation

High energies \rightarrow Regge Gribov limit $\sqrt{s} \rightarrow \infty, x \rightarrow 0$: gluon saturation

- Non-linear processes stop growth of gluons, emergence of saturation scale $Q_{S}(x)>\Lambda_{Q C D}$
- Gluon dominated wave function, high occupancy $\sim \frac{1}{\alpha_{S}}$ peaked at $Q_{S}(x)$
 most gluons are here (near Q_{S})

CGC : particle production at high energies

Multi particle production \rightarrow Color Glass condensate effective field theory
McLerran, Venugopalan hep-ph/9309289
Weak coupling effective theory:

- Fast (large-x) partons : classical color source ρ
- Slow (small-x) partons : classical color field \mathcal{A}^{μ}
(classical approximation)

$$
\sim \mathcal{O}\left(\frac{1}{\alpha_{s}}\right)
$$

CGC : particle production at high energies

McLerran, Venugopalan hep-ph/9309289

Distribution of color charge $\rho\left(\mathbf{x}_{\perp}\right) \rightarrow$ Input to the theory

Constraining color charge density

- IP-Sat model \longrightarrow distribution of color charge density of colliding hadrons : constrained by HERA DIS e-p data

$$
S_{\mathrm{dip}}^{p}\left(\mathbf{r}_{\perp}, x, \mathbf{b}_{\perp}\right)=\exp \left(-r^{2} Q_{S}(x, b)^{2}\right)
$$

In CGC (MV model) :

$$
\langle\rho \rho\rangle \sim Q_{S}^{2}
$$

Quantities of experimental interests

First-principle approach of n-gluon production

Single-particle production

Two-particle production production

The IP-Glasma model

- Colliding nuclei generate color current

$$
J^{\nu}=\delta^{\nu \pm} \rho_{A(B)}\left(x^{\mp}, \mathbf{x}_{\perp}\right)
$$

- The field is obtained by solving

$$
\left[D_{\mu}, F_{\mu \nu}\right]=J_{\nu}
$$

- The fields after collisions \rightarrow (in terms of incoming fields)

$$
A^{i}=A_{(A)}^{i}+A_{(B)}^{i} \quad A^{\eta}=\frac{i g}{2}\left[A_{(A)}^{i}, A_{(B)}^{i}\right]
$$

The IP-Glasma model

Fields after collisions provide :

- The Stress-Energy Tensor (co-ordinate space information)
- The gluon spectra (momentum space information)

The IP-Glasma model

Fields after collisions provide :

The Stress-Energy Tensor (co-ordinate space information)

- The gluon spectra (momentum space information)

IP-Glasma gluon dist \rightarrow Sampling gluons \rightarrow Strings \rightarrow Hadronization

IP-Glasma : momentum distribution of gluons

IP-Glasma : momentum distribution of gluons

CGC + Lund : IP-Glasma input to PYTHIA

CGC + Lund : Implementing strings

Connect the gluons close in momentum to strings with ~ No. of gluons per strings : $N_{\mathrm{gs}}=N_{g} /\left\langle Q_{S}^{2} S_{\perp}\right\rangle$

PYTHIA \rightarrow only for fragmentation, the MPI is replaced by IP-Glasma

CGC + Lund : Fragmentation of strings

$f\left(z, m_{T}\right)=\frac{1}{z}(1-z)^{a} \exp \left(-\frac{b m_{T}{ }^{2}}{z}\right)$
Lund String Fragmentation

A new Monte-Carlo event generator: CGC-Lund (CGC-PYTHIA)

Single Inclusive distributions

Reasonable agreement without any tuning

Multiplicity distribution

Multi-particle production in CGC Negative binomial distribution (NBD)
Collision geometry and impact parameter \rightarrow convolution of NBDs

Mass ordering of $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$

Data :1604.06736

Mass ordering of average transverse momentum \rightarrow naturally reproduced in this framework

$$
N_{\mathrm{g}} \sim Q_{S}^{2} S_{\perp},\left\langle p_{T}\right\rangle \sim Q_{S} \rightarrow\left\langle p_{T}\right\rangle \sim \sqrt{N_{\mathrm{g}} / S_{\perp}}
$$

CGC \rightarrow effects like MPI \& color reconnection is already built-in

Di-hadron correlations

Di-hadron correlations

Purely momentum space correlations of gluons produce ridge after fragmentation

Origin of ridge

Intrinsic momentum space correlations \rightarrow nature of the wave function

Mass ordering of di-hadron correlations

Strong species dependence of azimuthal correlations

Mass ordering of di-hadron correlations

Mass ordering of $\mathrm{v}_{2} \rightarrow$ initial state correlations + fragmentations

Summary and Takehome

- Very first attempt to combine CGC \& PYTHIA
- Described ridge in HM events
- Observed mass ordering of < $p_{T}>$ and V_{2}

Overall description of bulk observables based on initial state dynamics in $p+p$ collisions looks promising

Backup slides

Multi-particle productions

Double-Inclusive

$\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle \rightarrow\left\langle\rho_{1}^{*} \rho_{1}^{*} \rho_{1} \rho_{1} \rho_{2}^{*} \rho_{2}^{*} \rho_{2} \rho_{2}\right\rangle$

n-particle correlations

CGC framework is extendable to n-particle correlations

$2^{n}(n-1)$! topologies
Naturally generates Negative Binomial distribution probability distribution

$$
P_{n}^{\mathrm{NB}}=\frac{\Gamma(k+n)}{\Gamma(k) \Gamma(n+1)} \frac{\bar{n}^{n} k^{k}}{(\bar{n}+k)^{n+k}} \quad k=\kappa \frac{\left(N_{\mathrm{c}}^{2}-1\right) Q_{\mathrm{s}}^{2} S_{\perp}}{2 \pi}
$$

High-multiplicity events \longrightarrow originate from correlated production of n-particles \rightarrow Highly non-perturbative

CGC + Lund : IP-Glasma input to PYTHIA

Schenke, Schlichting, Tribedy, Venugopalan, Phys.Rev.Lett. 117 (2016) no.16, 162301

Hadronizations : combining CGC \& PYTHIA

- Full solutions of CYM on 2+1D lattice: IP-Glasma Monte-Carlo model of initial conditions : constrained by HIC data

Schenke, PT, Venugopalan 1202.6646

- Lund model of fragmentation in PYTHIA to produce particles from gluons: default parameters to avoid tuning

Sjostrand, Mrenna, Skands hep-ph/0603175

Step-I : sample gluons from IP-Glasma

Perform e-by-e classical YangMills evolution till time $\tau \sim 1 / Q_{S}$

$$
\begin{aligned}
\frac{d N_{g}}{d y d^{2} k_{T}}=\frac{2}{N^{2}} \frac{1}{\tilde{k}_{T}} & {\left[\frac{g^{2}}{\tau} \operatorname{tr}\left(E_{i}\left(\mathbf{k}_{\perp}\right) E_{i}\left(-\mathbf{k}_{\perp}\right)\right)\right.} \\
& \left.+\tau \operatorname{tr}\left(\pi\left(\mathbf{k}_{\perp}\right) \pi\left(-\mathbf{k}_{\perp}\right)\right)\right]
\end{aligned}
$$

Sample gluons in momentum space in the range :

Glasma distribution is boost invariant :
Distribution of Gluons \longrightarrow uniform in rapidity

Qualitative Picture : Small systems

Iow multiplicity events

mini-jets escape
high multiplicity events

mini-jets quenched

A Phase Diagram of Correlation

fig: S. Schlichting (QM'2015)

Azimuthal Correlations in CGC

- Intrinsic momentum space correlation from initial state
- Originate from partons (probe) scattering off a color domain (target)
- Suppressed by number of color sources / domains

Dumitru, Dusling, Gelis, Jalilian-Marian,
Lappi, Venugopalan 1009.5295
Kovner, Lublinsky 1012.3398
Dusling, Venugopalan 1201.2658
Kovchegov, Wertepny 1212.1195
Dumitru, Giannini 1406.5781
Lappi, Schenke, Schlichting, Venugopalan 1509.03499
Very distinct from Hydrodynamic flow (driven by geometry)

Azimuthal correlations (after fragmentation)

Real events

