Bulk observables in small colliding systems combining CGC and PYTHIA

Prithwish Tribedy

8th international workshop on MPI@LHC

Nov 28-Dec 2, San Cristóbal de las Casas, Chiapas, México

Outline

Observation in high-multiplicity p+p & p+A events \rightarrow similar to A+A(Often regarded as signature of collectivity)

Goal : Model multi-particle production in p+p and p+A

- A framework of particle production at high \sqrt{s}
- State-of-the art treatment of hadronization

Hadrons at high energies : gluon saturation

High energies \rightarrow Regge Gribov limit $\sqrt{s} \rightarrow \infty, x \rightarrow 0$: gluon saturation

• Non-linear processes stop growth of gluons, emergence of saturation scale $Q_S(x) > \Lambda_{QCD}$

Hadrons at high energies : gluon saturation

High energies \rightarrow Regge Gribov limit $\sqrt{s} \rightarrow \infty, x \rightarrow 0$: gluon saturation

- Non-linear processes stop growth of gluons, emergence of saturation scale $Q_S(x) > \Lambda_{QCD}$
- Gluon dominated wave function, high occupancy $\sim \frac{1}{\alpha_S}$ peaked at $Q_S(x)$

pation # $1/\alpha_s$ with mom. peaked at $p_T \approx Q_s$

ction at high energies

CGC : particle production at high energies

Multi particle production

Color Glass Co

Weak coupling effective theory:

- Fast (large-x) partons : classical color source ρ
- Slow (small-x) partons : classical color field \mathcal{A}^{μ}

(classical approximation) $\sim \mathcal{O}(\frac{1}{\alpha_s})$

$$\mathcal{H} \sim n(k)\omega(k)$$

Distribution of color charge

 $\rho(\mathbf{x} \mathbf{P}_{\mathbf{T}} \mathbf{q})$ duced particle multiplicity or number densit a massless dispersion relation $\omega(\mathbf{k}) = \mathbf{k}$.

Constraining color charge density

γ*

In CGC (MV model) :

 $\langle \rho \rho \rangle \sim Q_{\rm s}^2$

q

1-z

S

 IP-Sat model —> distribution of color charge density of colliding hadrons : constrained by HERA DIS e-p data

$$S^p_{\mathrm{dip}}(\mathbf{r}_{\perp}, x, \mathbf{b}_{\perp}) = \exp\left(-r^2 Q_S(x, b)^2\right)$$

Quantities of experimental interests

First-principle approach of n-gluon production

The IP-Glasma model

Colliding nuclei generate color current

 $J^{\nu} = \delta^{\nu \pm} \rho_{A(B)}(x^{\mp}, \mathbf{x}_{\perp})$

 $\cdot\,$ The field is obtained by solving

$$[D_{\mu}, F_{\mu\nu}] = J_{\nu}$$

 The fields after collisions → (in terms of incoming fields)

$$A^{i} = A^{i}_{(A)} + A^{i}_{(B)} \quad A^{\eta} = \frac{ig}{2} \left[A^{i}_{(A)}, A^{i}_{(B)} \right]$$

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

The IP-Glasma model

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

Fields after collisions provide :

- The Stress-Energy Tensor (co-ordinate space information)
- The gluon spectra (momentum space information)

The IP-Glasma model

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301 Fields after collisions provide :

- The Stress-Energy Tensor (co-ordinate space information)
- The gluon spectra (momentum space information)

IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization

IP-Glasma : momentum distribution of gluons

IP-Glasma : momentum distribution of gluons

CGC + Lund : IP-Glasma input to PYTHIA

CGC + Lund : Implementing strings

Connect the gluons close in momentum to strings with ~ No. of gluons per strings : $N_{\rm gs} = N_g/\langle Q_S^2 S_\perp \rangle$

PYTHIA \rightarrow only for fragmentation, the MPI is replaced by IP-Glasma

CGC + Lund : Fragmentation of strings

$$f(z,m_T) = \frac{1}{z}(1-z)^a \exp\left(-\frac{b m_T^2}{z}\right)$$

Lund String Fragmentation

A new Monte-Carlo event generator : CGC-Lund (CGC-PYTHIA)

Single Inclusive distributions

Multiplicity distribution

Multi-particle production in CGC Negative binomial distribution (NBD) Collision geometry and impact parameter \rightarrow convolution of NBDs

Mass ordering of $\langle p_T\,\rangle$

Mass ordering of average transverse momentum → naturally reproduced in this framework

$$N_{\rm g} \sim Q_S^2 S_\perp$$
 , $\langle p_T \rangle \sim Q_S \rightarrow \langle p_T \rangle \sim \sqrt{N_{\rm g}/S_\perp}$

CGC→ effects like MPI & color reconnection is already built-in

Di-hadron correlations

Di-hadron correlations

Purely momentum space correlations of gluons produce ridge after fragmentation

Origin of ridge

Intrinsic momentum space correlations → nature of the wave function

Mass ordering of di-hadron correlations

Strong species dependence of azimuthal correlations

Mass ordering of di-hadron correlations

Mass ordering of $v_2 \rightarrow initial$ state correlations + fragmentations

Summary and Takehome

- Very first attempt to combine CGC & PYTHIA
- Described ridge in HM events
- Observed mass ordering of <p_T> and v₂

Overall description of bulk observables based on initial state dynamics in p+p collisions looks promising

Backup slides

Multi-particle productions

Dumitru, Gelis, McLerran, Venugopalan 0804.3858

CGC framework is extendable to n-particle correlations

2ⁿ(n-1)! topologies

Naturally generates Negative Binomial distribution probability distribution $P_{n}^{NB} = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^{n}k^{k}}{(\bar{n}+k)^{n+k}} = \prod_{k=1}^{n} k = \kappa \frac{(N_{c}^{2}-1)Q_{s}^{2}S_{\perp}}{2\pi}$ High-multiplicity events —> originate from correlated production of n-particles —> Highly non-perturbative Gelis, Lippi, McLerran 0905.3234 $R = \frac{28}{28}$

CGC + Lund : IP-Glasma input to PYTHIA

Schenke, Schlichting, Tribedy, Venugopalan, Phys.Rev.Lett. 117 (2016) no.16, 162301

Hadronizations : combining CGC & PYTHIA

 Full solutions of CYM on 2+1D lattice : IP-Glasma Monte-Carlo model of initial conditions : constrained by HIC data

Schenke, PT, Venugopalan 1202.6646

 Lund model of fragmentation in PYTHIA to produce particles from gluons: default parameters to avoid tuning

Sjostrand, Mrenna, Skands hep-ph/0603175

Step-I : sample gluons from IP-Glasma

Perform e-by-e classical Yang-Mills evolution till time $\tau \sim 1/Q_{\scriptscriptstyle S}$

$$\frac{dN_g}{dyd^2k_T} = \frac{2}{N^2} \frac{1}{\tilde{k}_T} \left[\frac{g^2}{\tau} \operatorname{tr} \left(E_i(\mathbf{k}_\perp) E_i(-\mathbf{k}_\perp) \right) + \tau \operatorname{tr} \left(\pi(\mathbf{k}_\perp) \pi(-\mathbf{k}_\perp) \right) \right]$$

Sample gluons in momentum space in the range :

$$0 < |y_{\max}| < \log(\sqrt{s}/2m_p)$$

Glasma distribution is boost invariant : Distribution of Gluons —> uniform in rapidity

Qualitative Picture : Small systems

low multiplicity events

mini-jets escape

high multiplicity events

mini-jets quenched

A Phase Diagram of Correlation

fig: S. Schlichting (QM'2015)

Azimuthal Correlations in CGC

- Intrinsic momentum space correlation from initial state
- Originate from partons (probe) scattering off a color domain (target)
- Suppressed by number of color sources / domains

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan 1009.5295 Kovner, Lublinsky 1012.3398 Dusling, Venugopalan 1201.2658 Kovchegov, Wertepny 1212.1195 Dumitru, Giannini 1406.5781 Lappi, Schenke, Schlichting, Venugopalan 1509.03499

Very distinct from Hydrodynamic flow (driven by geometry)

Azimuthal correlations (after fragmentation)

