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Observation in high-multiplicity p+p & p+A events → similar to A+A 
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Outline

High-multiplicity
p+p

High-multiplicity
p+Pb

Pb+Pb

Goal : Model multi-particle production in p+p and p+A  
• A framework of particle production at high  
• State-of-the art treatment of hadronization 

√
s → ∞, x → 0

(Often regarded as signature of collectivity)



Hadrons at high energies : gluon saturation 

arXiv: 1212.1701 

• Non-linear processes stop growth of gluons, 
emergence of saturation scale 

• Gluon dominated wave function, high occupancy           
peaked at 

High energies → Regge Gribov limit                         :   gluon saturation
√
s → ∞, x → 0

QS(x) > ΛQCD

QCD Evolution equations

Non-linear recombination processes constrain the growth
! Saturation

p
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@ log(x0/x)
⇡ K ⌦ �(x , k?) � �(x , k?)2 BK/JIMWLK equation

Non-linear equation gives rise a scale, Q2
s

(x) ! saturation scale.
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Hadrons at high energies : gluon saturation 

arXiv: 
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• Non-linear processes stop growth of gluons, 
emergence of saturation scale 

• Gluon dominated wave function, high occupancy           
peaked at 

High energies → Regge Gribov limit                         : gluon saturation
√
s → ∞, x → 0

QS(x) > ΛQCD

∼ 1

αS

QS(x) > ΛQCD
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Weak coupling effective theory: 
• Fast (large-x) partons : 

classical color source 
• Slow (small-x) partons : 

classical color field 

(classical approximation)

CGC : particle production at high energies  

Initial configuration

JIMWLK evolution

Single gluon
emission

A (classical field)

projectile

target

McLerran, Venugopalan hep-ph/9309289 

Multi particle production →  Color Glass condensate effective field theory
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IP-Glasma : Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan PRL 108(2012)

E-by-E solve CYM for two colliding nuclei

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x�)⇢1(x?)

J� = �(x+)⇢2(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1(x?) + �(x+)�(�x�)↵i

2(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we
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3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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J+ = �(x�)⇢1(x?) J� = �(x+)⇢2(x?)

Ax0=0 = A(A) + A(B)

The%field%a|er%collision:%

Once%A

μ%%

a|er%collision%is%known,%%

we%can%calculate:%
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F

μν%%
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Solve%YangVMills%equa1on%for%

individual%nuclei%on%2+1%D%latce.%

Produced%par1cle%mul1plicity%or%number%density%=%n(k)%%can%be%calculated%by%assuming%

%a%massless%dispersion%rela1on%ω(k)%=%k.%

H ⇠ n(k)!(k)

Schenke,%PT,%Venugopalan%PRC#86,#034908#(2012)%

CGC% CGC%

Glasma%

Color charge density for one A+A collision

Two point correlator for one A+A collision

⇢(x?) sampled from local Gaussian distribution W [⇢]
D
⇢a(x?)⇢b(y?)

E
= �ab�2(x?�y?)g2µ2(x?)

lattice implementation Krasnitz, Venugopalan, hep-ph/9809433 Lappi, hep-ph/0303076
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Color Glass Condensate
I Color: QCD (gluons carry color charge)
I Glass: Stochastic interactions, dynamics on very long time

scales (time dilation).
I Condensate: Fields with large occupation # ⇠ 1/↵

S

with
mom. peaked at k

T

⇡ Q
S

TPSC%seminar,%IIT%Roorkee%%29/11/12% 36%

Color%Glass%Condensate%

Color:%QCD%(gluons%carry%color%charge)%
%

Glass:%Stochas1c%interac1ons,%dynamics%on%very%long%1me%scales%(1me%dila1on%).%%
%

Condensate:%Fields%with%large%occupa1on%#%1/αS%with%mom.%peaked%at%pT≈%QS%

����""��������#� !�����
��
����!�!����	������

⇢Aµ
x0

x

Classical%Field% Sta1c%source%

1%

In%the%satura1on%regime%hadrons/nuclei%!%CGC%%

figure :Albacete

A weak coupling e↵ective theory with
I Fast (large-x) partons ! static classical color source ⇢
I Slow (small-x) partons ! classical gluon fields Aµ.

McLerran , Venugopalan 1994 (hep-ph/9309289)
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Gluon saturation Gribov, Levin, Ryskin 1983

No of gluons of a fixed size saturates due to phase space constrain.

many new
smaller partons
are produced

Proton
(x, Q2)

Proton
(x0, Q2)

x0 >> x

Low Energy High Energy

parton

“Color Glass Condensate” 

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?
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figure: 1212.1701

Density saturates with max. occupancy ⇠ O( 1
↵
s

) for k
T

 Q
S

(x)

Higher energy ! larger Q
s

� ⇤
QCD

, e↵ective coupling ↵
S

(Q
S

) is small
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Weak coupling effective theory: 
• Fast (large-x) partons : 

classical color source 
• Slow (small-x) partons : 

classical color field 

(classical approximation)

CGC : particle production at high energies  

McLerran, Venugopalan hep-ph/9309289 

Multi particle production 

6

⇢(

classical gluon fields Aµ.

Density saturates with max. occupancy ⇠ O( 1
↵
s

) for

Distribution of color charge            → Input to the theory 

IP-Glasma : Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan PRL 108(2012)

E-by-E solve CYM for two colliding nuclei
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Initial configuration

JIMWLK evolution

Single gluon
emission

A (classical field)

ρ
P

ρ
T

p
k

p-k
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• IP-Sat model —> distribution of color charge 
density of colliding hadrons : constrained by 
HERA DIS e-p data

Constraining color charge densitySaturation models of HERA DIS Bartels, Golec-Biernat, Kowalski
Kowalski, Teaney

How to extract satiation scales/hadronic wave functions from
HERA data?

Cross section in e + p collisions is parametrized
r

q

q
z

1-z

*a

The dipole scattering matrix for proton is b

Sp

dip(r?, x ,b?) = exp
�
�r2Q

S

(x , b)2
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Saturation models of HERA DIS Bartels, Golec-Biernat, Kowalski
Kowalski, Teaney

How to extract satiation scales/hadronic wave functions from
HERA data?

Cross section in e + p collisions is parametrized
r

q

q
z

1-z

*a

The dipole scattering matrix for proton is b

Sp

dip(r?, x ,b?) = exp
�
�r2Q

S

(x , b)2
�
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⟨ρρ⟩ ∼ Q2
S

In CGC (MV model) :
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Quantities of experimental interests
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Single gluon production

ρ
P

ρ
T

p
k

p-k

65

Double gluon production
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FIG. 4. A cartoon showing the contributions of di-jet and glasma graphs in two particle correlation function Y (��) integrated
over a broad range of |�⌘|. This is a slightly modified version of the figure from [78]

the systematics of multi-particle correlations in small col-
lision systems.

B. Qualitative discussion of Initial state
correlations

Multi-particle production in Quantum Chromo Dy-
namics (QCD) naturally leads to correlations between
particles produced in high-energy collisions. A complete
theoretical understanding of these e↵ects though is ex-
tremely challenging. Neverthelesse significant progress
has been achieved in recent years based on the CGC ef-
fective field theory (EFT) of high-energy QCD, which
provides the basis for phenomenological applications at
RHIC and LHC energies.

Let us focus our discussion on the origin and systemat-
ics of the two particle correlations seen at LHC. By far the
most well established source of long-range two-particle
azimuthal correlations is due the production of back-to-
back di-jets. Such processes (also referred as “Mueller-
Navelet” jets [80]) are depicted in the right panel of Fig. 4
and can be computed within standard perturbative QCD.
Di-jet production is kinematically constrained to produce
only away side (peaked at �� = ⇡) collimations and
dominates in low-multiplicity or min-bias events. How-
ever, in high-multiplicity events one is probing rare con-
figurations of the proton where in addition to the pro-
duction of di-jets from a single hard scattering, multi-
parton processes become increasingly important. A first
calculation of these e↵ects in the CGC framework was
based on evaluating the associated Feynman diagrams re-
ferred to as “Glasma graphs”, depicted in the left panel
of Fig. 4. Such graphs give rise to non-factorizable two
particle correlations that has symmetric structure in rel-
ative azimuthal angle �� around ⇡/2 (see Fig.4). When
decomposed in terms of the Fourier coe�cients of the
particle distributions, they give rise to non-zero even har-
monics v

n

. Beyond the lowest order processes depicted
in the left panel of Fig. 4, further contributions to the az-
imuthal collimations come from the multiple scattering of
partons leading to both even and odd v

n

. Such processes

can be included in a classical Yang-Mills description and
will be discussed in more detail in a following section.
Since interference e↵ects between Glasma graphs and

Jet graphs vanish to lowest order in the kinematic regime
⇤
QCD

⌧ Q
S

. p
T

, q
T

the resulting two-particle correla-
tions function as a direct sum of both contributions

d2N corr.

d2pT d
2

qT dypdyq
=

d2N corr.

Glasma

d2pT d
2

qT dypdyq
+

d2N corr.

Jet

d2pT d
2

qT dypdyq
.

(3)
The relative strength of the di-jet production represented
by the “Jet-graph” and the “Glasma-graphs” determines
the features of the observed di-hadron correlations as
shown in Fig.4. In high multiplicity events the Glasma
graphs are enhanced by a relative factor of ↵�4

S

com-
pared to the “Jet-graphs”, one therefore naturally ex-
pects to see a pronounced near side collimation at�� ⇠ 0
that extends over a wide range of rapidity referred as the
“near side ridge”. The fact that near side collimation
extends in long range rapidity is a consequence of the
nearly boost invariant nature of the glasma gluon fields.
While qualitatively these features are indeed present in
the experimental data, of course it requires detailed the-
ory calculations to establish the quality of agreement. In
the remainder of this section, we will outline the essential
steps in the computation of initial state correlations in
the CGC framework. A summary of comparisons with
experimental results is presented in section III.
In the CGC framework colliding protons and nuclei are

e↵ectively described as static sources of color charge on
the light-cone that generate color currents

J⌫ = �⌫±⇢
A(B)

(x±,x?). (4)

The color charge densities ⇢
A(B)

(x±,x?) in each collid-
ing hadron or nucleus fluctuate from event to event and
their statistical properties are constrained by indepen-
dent measurements. Computation of multi-particle pro-
duction in CGC framework is based on the calculation
of the classical Yang-Mills fields created due such color
currents by solving the Yang-Mills equations

[D
µ

, Fµ⌫ ] = J⌫ . (5)
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• Promising results on multiplicity distributions 
• Observables are to be studied in bins of multiplicity

Multiplicity distribution

NBD fluctuation is a  
natural consequence 

of multi-particle  
production in CGC
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The results that changed everything

Is this signature of collectivity ? 
Is this signature of QGP ?
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First-principle approach of n-gluon production 
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54

multiplicity

pr
ob

ab
ilit

y
arXiv: 1011.5531

Ridge appears in high multiplicity p+p/A events

54

multiplicity

pr
ob

ab
ilit

y



The IP-Glasma model

Schenke, PT, Venugopalan Phys. Rev. Lett. 108 (2012) 252301

[Dµ, Fµ� ] = J�

9

IP-
Sat

: C
olo
r ch

arg
e d

istr
ibu

tion
insi

de
Nu
clei

IP-
Sat

(Im
pac

t P
ara

me
ter

dep
end

ent
satu

rati
on)

par
am

etri
zat

ion
HE

RA

DIS
! pro

ton
-dip

ole
sca

tter
ing

ma
trix

S

p

d

i

p

(r ?
, x ,

b

?)
⇠ ex

p
� �r

2
Q

2
s

p

/2
�

The
nuc

lear
sca

tter
ing

ma
trix

is o
bta

ined
as

S

A

d

i

p

(r ?
, x ,

b

?)
=

AY

i

=0
S

p

d

i

p

(r ?
, x ,

b

?)
S i

p

i

! nuc
leon

s ar
e d

istr
ibu

ted
acc

ord
ing

to F
erm

i di
stri

but
ion

.

S

A

d

i

p

! dist
ribu

tion
of n

ucle
ar s

atu
rati

on
sca

le Q
s

(b ?
, x)

solv
ing

:

S

A

d

i

p

(r ?
= r S

, x ,
b

?)
= e

xp(
�1/

2)
=)

Q

2
s

=
2

r

2
S

Iter
ativ

ely
solv

ing
x

=
Q

s
(b ?

,x)
p s

! Q

s

(b ?
,

p
s

)

Lum
py

colo
r ch

arg
e d

ens
ity

dist
ribu

tion
g

2 µ(x ?
)⇠Q

s

(x ?
)

Ko
wa

lsk
i, L

app
i, V

enu
gop

ala
n 0

705
.30

47

Lap
pi,

arX
iv:0

711
.30

39,
110

4.3
725 Pri

thw
ish

Tri
bed

y
Qu

ark
Ma

tte
r 2

014
, D

arm
sta

dt,
Ge
rm

any
6/2

3

IP-S
at:

Col
orc

harg
edi

stri
but

ion
insi

deN
ucle

i

IP-S
at(

Imp
act

Par
ame

ter
dep

end
ent

satu
rati

on)
para

met
riza

tion
HER

A

DIS
!prot

on-d
ipol

esc
atte

ring
mat

rix
S

p

d

i

p(r?
,x,

b

?)⇠
exp�

�r2
Q

2
s

p

/2�

The
nuc

lear
scat

teri
ngm

atri
xis

obt
aine

das

S

A

d

i

p

(r?
,x,

b

?)=A

Y
i

=0

S

p

d

i

p(r?
,x,

b

?)

S
i

p

i

!nuc
leon

sar
edi

strib
uted

acc
ordi

ngt
oF

erm
idis

trib
utio

n.

S

A

d

i

p

!dist
ribu

tion
ofn

ucle
ars

atu
rati

ons
cale

Q

s

(b?
,x)

solv
ing

:

S

A

d

i

p

(r?
=r

S

,x,
b

?)=
exp

(�1/
2)

=)
Q

2
s

=2
r2
S

Iter
ativ

ely
solv

ing
x

=Q

s

(b?
,x) p

s

!Q

s

(b?
,p
s

)

Lum
pyc

olor
cha

rge
den

sity
dist

ribu
tion

g2µ
(x?)

⇠Q
s

(x?)

Kow
alsk

i,L
app

i,V
enu

gop
alan

070
5.3

047

Lap
pi,

arX
iv:0

711
.30

39,
110

4.3
725

Pri
thw

ish
Trib

edy

Qu
ark

Ma
tter

201
4,D

arm
sta
dt,

Ger
ma

ny
6/2

3

z

t

1
QS

x x+−

A  = pure gauge 1 A  = pure gauge 2

_I

A  = 0

4

with the color current

J⌫ = �⌫±⇢
A(B)

(x⌥,x?) (6)

generated by a nucleus A (B) moving along the x+ (x�)
direction (the upper index is for nucleus A). In (6) we
have assumed that we are in a gauge where A⌥ = 0
such that temporal Wilson lines along the x+ (x�) axis
become trivial unit matrices.

The solution to Eq. (5) is most easily found in Lorentz
gauge @

µ

Aµ = 0, where the equation becomes a two-
dimensional Poisson equation

�r2

?A
±
A(B)

= ⇢
A(B)

(x⌥,x?) , (7)

whose solution can formally be written as

A±
A(B)

= �⇢
A(B)

(x⌥,x?)/r2

? . (8)

It will be more convenient to work in light-cone gauge
A+(A�) = 0 when computing the gluon fields after the
collision. The solution in this gauge is obtained by gauge
transforming the result in Lorentz gauge using the path-
ordered exponential

V
A(B)

(x?) = P exp

✓

�ig

Z

dx� ⇢A(B)(x�,x?)

r2

T

+m2

◆

, (9)

giving the pure gauge fields [10, 33, 34]

Ai

A(B)

(x?) = ✓(x�(x+))
i

g
V
A(B)

(x?)@iV
†
A(B)

(x?) , (10)

A�(A+) = 0 . (11)

The infrared regulator m in Eq. (9) is of order ⇤
QCD

and
incorporates color confinement at the nucleon level. 4

Physically, the solution (10,11) is a gauge transform of
the vacuum on one side of the light-cone and another
gauge transform of the vacuum on the other side. We
have chosen one of them to be zero as an overall gauge
choice. The discontinuity in the fields on the light-cone
corresponds to the localized valence charge source [5].

The initial condition for a heavy-ion collision at time
⌧ = 0 is given by the solution of the CYM equations
in Fock–Schwinger gauge A⌧ = (x+A� + x�A+)/⌧ = 0,
which is a natural choice because it interpolates between
the light-cone gauge conditions of the incoming nuclei. It
is also necessary for the Hamiltonian formulation that we
adopt (gauge links in the temporal (⌧) direction become

4 Other prescriptions which do not explicitly introduce a mass [35]
are feasible but they all inevitably involve introducing a nucleon
size scale. This is because there is a Coulomb problem in QCD
which is cured only by confinement. The presumption here is
that physics at high energies is dominated by momenta ⇠ Qs

and is insensitive to infrared physics at the scale m. From a
practical point of view, we observe that our results are weakly
sensitive to small variations in the scale m.

unit matrices in this gauge). It has a simple expression
in terms of the gauge fields of the colliding nuclei 5[5, 36]:

Ai = Ai

(A)

+Ai

(B)

, (12)

A⌘ =
ig

2

h

Ai

(A)

, Ai

(B)

i

, (13)

@
⌧

Ai = 0 , (14)

@
⌧

A⌘ = 0 (15)

In the limit ⌧ ! 0, A⌘ = �E
⌘

/2, with E
⌘

the longitu-
dinal component of the electric field. At ⌧ = 0, the only
non-zero components of the field strength tensor are the
longitudinal magnetic and electric fields, which can be
computed non-perturbatively. They determine the en-
ergy density of the Glasma at ⌧ = 0 at each transverse
position in a single event [8, 9].
The Glasma fields are then evolved in time ⌧ accord-

ing to Eq. (5). Over a time scale ⇠ 1/Q
s

the fields are
strong and the system is strongly interacting. Due to the
expansion of the system, the fields become weak after
this time scale and the system begins to stream freely.
Incorporation of quantum fluctuations in a 3+1 dimen-
sional CYM simulation will however lead to instabilities,
which will modify this behavior and potentially keep the
system strongly interacting for a more extended period
of time [37, 38]. As noted previously, these instabilities
could isotropize the system, naturally leading to a tran-
sition to viscous hydrodynamic behavior. The detailed
study of instabilities and the origin of isotropization is
a complex task and beyond the scope of this work. For
recent progress in this direction see [28, 39–41]. We em-
phasize that key aspects of this work, the event-by-event
determination of color charge distributions and solutions
of Yang–Mills equations will be essential ingredients in
these generalized frameworks as well. In particular, in
the framework of Ref. [28], the additional ingredient is
repeated solution of the CYM equations with slightly
di↵erent seeds drawn from an initial spectrum of fluc-
tuations.

III. NUMERICAL COMPUTATION

We will now discuss the numerical implementation of
the continuum discussion in the previous section. Be-
cause the classical gauge field configurations are boost
invariant, our computations are carried out on 2+1-
dimensional lattices. From the nuclear color charge den-
sity squared, determined as described in the previous sec-
tion, we can sample independent color charges ⇢a(x?)
(suppressing x from now on) according to

h⇢a
k

(x?)⇢
b

l

(y?)i = �ab�kl�2(x? � y?)
g2µ2

A

(x?)

N
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, (16)

5 The metric in the (⌧,x?, ⌘) coordinate system is gµ⌫ =
diag(1,�1,�1,�⌧

2) so that A⌘ = �⌧

2
A

⌘ . The ± components
of the gauge field are related by A

± = ±x

±
A

⌘ .

�
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Fields after collisions provide :
- The Stress-Energy Tensor (co-ordinate space information)  
- The gluon spectra (momentum space information) 

Input for hydro, A+A collisions

Input for PYTHIA, p+p collisions

The IP-Glasma model
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IP-Glasma gluon dist→ Sampling gluons → Strings → Hadronization 
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Connect the gluons close in momentum to strings with ~                                  
No. of gluons per strings : Ngs = Ng/⟨Q2

SS⊥⟩

p y

px

gluons
quarks
anti-quarks
strings

y

px

gluons
quarks
anti-quarks
strings

y
py

gluons
quarks
anti-quarks
strings

px

py

px

y

PYTHIA → only for fragmentation, the MPI is replaced by IP-Glasma

CGC + Lund : Implementing strings
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Lund String Fragmentation 

A new Monte-Carlo event generator : CGC-Lund (CGC-PYTHIA)

CGC + Lund : Fragmentation of strings
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Reasonable agreement 
without any tuning  
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Multi-particle production in CGC Negative binomial distribution (NBD)

+ + ..

Multiplicity distribution
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Collision geometry and impact parameter  →  convolution of NBDs
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Mass ordering of average transverse momentum  
       → naturally reproduced in this framework

Data :1604.06736 0

 0.5  1

 1.5  2

 0
 1

 2
 3

 4
 5

 6

〈pT 〉 [GeV]

N
ch  / 〈N

ch 〉

p( −p)
K

±

π
±IP-G

lasm
a + PYTH

IA (p+p 7 TeV)

ALIC
E

C
M

S

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

〈p
T 
〉 [

G
eV

]

Nch / 〈Nch〉

p(−p)
K±

π±

IP-Glasma + PYTHIA (p+p 7 TeV)

ALICECMS

 0

 0.04

 0.08

 0.12

6 < Nch /〈Nch 〉 < 8

v 2
{2
}

π±

K±

p(−p)

2<|∆η|<4.8 , 0.3<pT
asc<3 GeV

 0

 0.04

 0.08

 0.12

 0  1  2  3  4  5

(p+p 7 TeV)

v 2
{2
}

pT (GeV)

h±

KS
0

Λ/(−Λ)

CGC + Lund
 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

〈p
T 
〉 [

G
eV

]

Nch / 〈Nch〉

Λ(−Λ)
K0

S
h±

IP-Glasma + PYTHIA (p+p 7 TeV)

ALICE

× 0.75
 0

 0.04

 0.08

 0.12

6 < Nch /〈Nch 〉 < 8

v 2
{2
}

π±

K±

p(−p)

2<|∆η|<4.8 , 0.3<pT
asc<3 GeV

 0

 0.04

 0.08

 0.12

 0  1  2  3  4  5

(p+p 7 TeV)

v 2
{2
}

pT (GeV)

h±

KS
0

Λ/(−Λ)

CGC + Lund

3

10-5
10-4
10-3
10-2
10-1
100

 0  1  2  3  4  5  6

P(
N

ch
 /〈

N
ch
〉)

Nch / 〈Nch〉

CMS data
Gluons

Hadrons

CGC + Lund
p+p 7 TeV

FIG. 2. Probability distribution of scaled charged hadron
multiplicity measured over |⌘| < 0.5 in p+p collisions at 7
TeV. The data points are from Ref. [63].

multiplicity and the inclusive hadron multiplicity to ex-
perimental data on inelastic non-single di↵ractive events
from the CMS collaboration [63]. We note that the IP-
Glasma model naturally produces multiplicity distribu-
tions of gluons that are a convolution of multiple nega-
tive binomial distributions [43, 44, 64]. In computing
the multiplicity distribution, we included all events in
which the rapidity density of gluons dNg/dy � 1 [65].
The multiplicity of charged hadrons dN

ch

/dy is about
50 � 75% larger than dNg/dy depending on the cou-
pling used. Fragmentation however does not significantly
change the shape of the distribution of the scaled multi-
plicity. Within the available statistics we find very good
agreement with the data up to six times the mean mul-
tiplicity.

We now present results for the average transverse mo-
mentum hpT i for charged hadrons over the experimen-
tally used range of transverse momentum 0.15GeV <
pT < 10.0 GeV and |⌘| < 0.3, and for identified hadrons
⇡±,K±, p(p̄),K0

S and ⇤/(⇤̄) for a rapidity range of |y| <
0.5, with no cuts on transverse momentum. We compare
our calculation to the preliminary and published mea-
surements from the ALICE [66, 69] and CMS collabora-
tions [67]. To perform a consistent comparison between
data and our computation, we show the variation of hpT i
with the scaled charged hadron multiplicity N

ch

/ hN
ch

i
in Fig. 3 [70].

Our results for the multiplicity dependence of hpT i in
the running coupling case are shown by solid lines. The
bands shown include the variation due to using fixed cou-
pling, which decreases hpT i by about 10 � 15% and the
e↵ect of turning o↵ color reconnections in PYTHIA frag-
mentation which decreases hpT i by about 5 � 10% [71].
We see a strong increase of hpT i with increasing multi-
plicity, consistent with the data. More interestingly, we
find that our framework naturally reproduces the mass
ordering for di↵erent species: hpT ip >hpT iK >hpT i⇡ and
hpT i⇤>hpT iK0

S

>hpT ih over the entire range of multiplicity

considered.
The strong multiplicity dependence of hpT i and the

mass ordering was demonstrated to arise in the fragmen-
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FIG. 3. Mass ordering of hpT i plotted against scaled charged
hadron multiplicity N
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i. Data points for identified par-
ticles from the ALICE [66] and CMS [67] Collaborations are
in the range |y| < 0.5 and |y| < 1, respectively. The val-
ues corresponding to hN

ch

i are obtained from Ref. [68] and
Ref. [63] for ALICE and CMS data correspondingly. The hpT i
values for charged hadrons are obtained from Ref. [69].

tation of mini-jets in HIJING calculations [72]. Such ef-
fects are also obtained in PYTHIA calculations within
the color-reconnection scheme [69, 73–75]. In PYTHIA,
high multiplicity events are associated with a large num-
ber of independent parton showers. These hadrons frag-
menting from independent showers will have hpT i to be
independent of the number of showers and therefore in-
dependent of hN

ch

i. The inclusion of color-reconnections
modifies this by generating correlations between partons
from di↵erent showers; this leads to collective hadroniza-
tion of strings and the strong correlation observed be-
tween hpT i and hN

ch

i.
Both parton showering and multi-parton interactions

are included in the CGC framework, and all the par-
ton ladders in rapidity, localized within a transverse area
⇠ 1/Q2

S are correlated. Specifically, with regard to the
correlation between multiplicity N

g

⇠ Q2

SS? and mean
transverse momentum of gluons hpT i ⇠ QS , one finds
hpT i ⇠

p
N

g

/S? showing that the correlation between
hpT i and N

g

is already present at the gluon level. Con-
versely, the mass ordering of the hpT i of di↵erent species
can be attributed to the fragmentation scheme imple-
mented in the hadron-stand-alone mode of PYTHIA.
Color-reconnection only has a small e↵ect, because glu-
ons are not associated with separate showers and are al-
ready assigned to strings depending on their momenta.
The hardening of the transverse momentum distribu-

tion and mass ordering of hpT i are often attributed to
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TeV. The data points are from Ref. [63].

multiplicity and the inclusive hadron multiplicity to ex-
perimental data on inelastic non-single di↵ractive events
from the CMS collaboration [63]. We note that the IP-
Glasma model naturally produces multiplicity distribu-
tions of gluons that are a convolution of multiple nega-
tive binomial distributions [43, 44, 64]. In computing
the multiplicity distribution, we included all events in
which the rapidity density of gluons dNg/dy � 1 [65].
The multiplicity of charged hadrons dN
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/dy is about
50 � 75% larger than dNg/dy depending on the cou-
pling used. Fragmentation however does not significantly
change the shape of the distribution of the scaled multi-
plicity. Within the available statistics we find very good
agreement with the data up to six times the mean mul-
tiplicity.

We now present results for the average transverse mo-
mentum hpT i for charged hadrons over the experimen-
tally used range of transverse momentum 0.15GeV <
pT < 10.0 GeV and |⌘| < 0.3, and for identified hadrons
⇡±,K±, p(p̄),K0

S and ⇤/(⇤̄) for a rapidity range of |y| <
0.5, with no cuts on transverse momentum. We compare
our calculation to the preliminary and published mea-
surements from the ALICE [66, 69] and CMS collabora-
tions [67]. To perform a consistent comparison between
data and our computation, we show the variation of hpT i
with the scaled charged hadron multiplicity N

ch

/ hN
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i
in Fig. 3 [70].

Our results for the multiplicity dependence of hpT i in
the running coupling case are shown by solid lines. The
bands shown include the variation due to using fixed cou-
pling, which decreases hpT i by about 10 � 15% and the
e↵ect of turning o↵ color reconnections in PYTHIA frag-
mentation which decreases hpT i by about 5 � 10% [71].
We see a strong increase of hpT i with increasing multi-
plicity, consistent with the data. More interestingly, we
find that our framework naturally reproduces the mass
ordering for di↵erent species: hpT ip >hpT iK >hpT i⇡ and
hpT i⇤>hpT iK0
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>hpT ih over the entire range of multiplicity
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The strong multiplicity dependence of hpT i and the
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tation of mini-jets in HIJING calculations [72]. Such ef-
fects are also obtained in PYTHIA calculations within
the color-reconnection scheme [69, 73–75]. In PYTHIA,
high multiplicity events are associated with a large num-
ber of independent parton showers. These hadrons frag-
menting from independent showers will have hpT i to be
independent of the number of showers and therefore in-
dependent of hN
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i. The inclusion of color-reconnections
modifies this by generating correlations between partons
from di↵erent showers; this leads to collective hadroniza-
tion of strings and the strong correlation observed be-
tween hpT i and hN

ch

i.
Both parton showering and multi-parton interactions

are included in the CGC framework, and all the par-
ton ladders in rapidity, localized within a transverse area
⇠ 1/Q2

S are correlated. Specifically, with regard to the
correlation between multiplicity N
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⇠ Q2

SS? and mean
transverse momentum of gluons hpT i ⇠ QS , one finds
hpT i ⇠
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/S? showing that the correlation between
hpT i and N
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is already present at the gluon level. Con-
versely, the mass ordering of the hpT i of di↵erent species
can be attributed to the fragmentation scheme imple-
mented in the hadron-stand-alone mode of PYTHIA.
Color-reconnection only has a small e↵ect, because glu-
ons are not associated with separate showers and are al-
ready assigned to strings depending on their momenta.
The hardening of the transverse momentum distribu-

tion and mass ordering of hpT i are often attributed to
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multiplicity and the inclusive hadron multiplicity to ex-
perimental data on inelastic non-single di↵ractive events
from the CMS collaboration [63]. We note that the IP-
Glasma model naturally produces multiplicity distribu-
tions of gluons that are a convolution of multiple nega-
tive binomial distributions [43, 44, 64]. In computing
the multiplicity distribution, we included all events in
which the rapidity density of gluons dNg/dy � 1 [65].
The multiplicity of charged hadrons dN

ch

/dy is about
50 � 75% larger than dNg/dy depending on the cou-
pling used. Fragmentation however does not significantly
change the shape of the distribution of the scaled multi-
plicity. Within the available statistics we find very good
agreement with the data up to six times the mean mul-
tiplicity.

We now present results for the average transverse mo-
mentum hpT i for charged hadrons over the experimen-
tally used range of transverse momentum 0.15GeV <
pT < 10.0 GeV and |⌘| < 0.3, and for identified hadrons
⇡±,K±, p(p̄),K0

S and ⇤/(⇤̄) for a rapidity range of |y| <
0.5, with no cuts on transverse momentum. We compare
our calculation to the preliminary and published mea-
surements from the ALICE [66, 69] and CMS collabora-
tions [67]. To perform a consistent comparison between
data and our computation, we show the variation of hpT i
with the scaled charged hadron multiplicity N

ch

/ hN
ch

i
in Fig. 3 [70].

Our results for the multiplicity dependence of hpT i in
the running coupling case are shown by solid lines. The
bands shown include the variation due to using fixed cou-
pling, which decreases hpT i by about 10 � 15% and the
e↵ect of turning o↵ color reconnections in PYTHIA frag-
mentation which decreases hpT i by about 5 � 10% [71].
We see a strong increase of hpT i with increasing multi-
plicity, consistent with the data. More interestingly, we
find that our framework naturally reproduces the mass
ordering for di↵erent species: hpT ip >hpT iK >hpT i⇡ and
hpT i⇤>hpT iK0

S

>hpT ih over the entire range of multiplicity

considered.
The strong multiplicity dependence of hpT i and the

mass ordering was demonstrated to arise in the fragmen-
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i are obtained from Ref. [68] and
Ref. [63] for ALICE and CMS data correspondingly. The hpT i
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tation of mini-jets in HIJING calculations [72]. Such ef-
fects are also obtained in PYTHIA calculations within
the color-reconnection scheme [69, 73–75]. In PYTHIA,
high multiplicity events are associated with a large num-
ber of independent parton showers. These hadrons frag-
menting from independent showers will have hpT i to be
independent of the number of showers and therefore in-
dependent of hN

ch

i. The inclusion of color-reconnections
modifies this by generating correlations between partons
from di↵erent showers; this leads to collective hadroniza-
tion of strings and the strong correlation observed be-
tween hpT i and hN

ch

i.
Both parton showering and multi-parton interactions

are included in the CGC framework, and all the par-
ton ladders in rapidity, localized within a transverse area
⇠ 1/Q2

S are correlated. Specifically, with regard to the
correlation between multiplicity N

g

⇠ Q2

SS? and mean
transverse momentum of gluons hpT i ⇠ QS , one finds
hpT i ⇠

p
N

g

/S? showing that the correlation between
hpT i and N

g

is already present at the gluon level. Con-
versely, the mass ordering of the hpT i of di↵erent species
can be attributed to the fragmentation scheme imple-
mented in the hadron-stand-alone mode of PYTHIA.
Color-reconnection only has a small e↵ect, because glu-
ons are not associated with separate showers and are al-
ready assigned to strings depending on their momenta.
The hardening of the transverse momentum distribu-

tion and mass ordering of hpT i are often attributed to

→,

CGC→ effects like MPI & color reconnection is already built-in 

Mass ordering of
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Origin of ridge
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Strong species dependence of azimuthal correlations
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Summary and Takehome

• Very first attempt to combine 
CGC & PYTHIA 

• Described ridge in HM events 

• Observed mass ordering of 
<pT> and v2
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Multi-particle productions Single inclusive distribution
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Color Averaging 
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Single-Inclusive

Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

The dominant contribution comes from disconnected diagrams
connected by color averaging.
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Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated and non-correlated contribution

C

2

(p,q) ⌘
⌧

dN

2

dypd
2

p?dyqd
2

q?

�
�

⌧
dN

dypd
2

p?

� ⌧
dN

dyqd
2

q?

�
,

# #
connected disconnected
diagrams diagrams

p

q

p

q

8 topologies 1 topology
It can be shown

C

2

(p,q) =

2

S?Q2

s

⌧
dN

dypd
2

p?

� ⌧
dN

dyqd
2

q?

�
,


2

! non-perturbative constant.
11 / 24

Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

The dominant contribution comes from disconnected diagrams
connected by color averaging.

p

q

The two gluon production amplitude for fixed color charges ⇢
1

, ⇢
2

M ⇠ ⇢
1

(k
1?)

k

2

1?

⇢
1

(k
2?)

k

2

2?

⇢
2

(p? � k

1?)

(p? � k

1?)2
⇢
2

(q? � k

2?)

(q? � k

2?)2
L

µ(p, k
1?)L

⌫(q, k
2?) ,

⌦|M|2↵ ! h⇢⇤
1

⇢⇤
1

⇢
1

⇢
1

⇢⇤
2

⇢⇤
2

⇢
2

⇢
2

i ) 9 possible ways to contract.

⌦|M|2↵ ! 8 connected & 1 disconnected diagram

10 / 24

Double-Inclusive

Two particle correlation
Dumitru, Gelis, McLerran, Venugopalan 0804.3858

Correlated and non-correlated contribution
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n-particle correlations
multi-particle production topologies

Gelis, Lappi, McLerran 0905.3234
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Naturally generates Negative Binomial distribution probability distribution  
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CGC framework is extendable to n-particle correlations 

High-multiplicity events —> originate from correlated production of n-particles
—> Highly non-perturbative 
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2n(n-1)!  topologies
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CGC + Lund : IP-Glasma input to PYTHIA
Schenke, Schlichting, Tribedy, Venugopalan, Phys.Rev.Lett. 117 (2016) no.16, 162301 



• Full solutions of CYM on 
2+1D lattice : IP-Glasma 
Monte-Carlo model of initial 
conditions : constrained by 
HIC data 

• Lund model of fragmentation 
in PYTHIA to produce 
particles from gluons: default 
parameters to avoid tuning 

30

Sjostrand, Mrenna, Skands hep-ph/0603175

Schenke, PT, Venugopalan 1202.6646
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Perform e-by-e classical Yang-
Mills evolution till time  

  

Sample gluons in momentum 
space in the range :

31

Glasma distribution is boost invariant : 
Distribution of Gluons —> uniform in rapidity    

Bulk observables in p+p collisions using Yang-Mill dynamics and Lund string

fragmentation

I. YANG-MILLS EVOLUTION : IP-GLASMA

The current implementation of IP-Glasma model in-
cludes three di↵erent sources of fluctuations : 1) impact
parameter of collisions, 2) intrinsic saturation scale of the
proton, 3) the spatial distribution of color charge density,
constrained by IP-Sat parametrization of HERA data.

The fluctuation of impact parameter is determined by
the di↵erential probability

dP

d

2

b

(b) =
1� e

��ggN
2
gTpp(b)

R
d2b
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1� e

��ggN
2
g Tpp(b)

⌘
, (1)

where T

pp

is the e↵ective overlap area of the two pro-
tons and N

2

g

�

gg

is the e↵ective partonic cross section,
the value of which is adjusted in such way that the de-
nominator of the Eq.1 becomes equal to the inelastic p+p
collision cross section �

inel

NN

=70 mb.
The intrinsic fluctuation of the proton saturation scale

is introduced according to the distribution
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/hQ2
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i)) = 1p
2⇡�
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� ln2(Q2
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S

i)
2�2

◆
, (2)

where the value of � = 0.5 has been adjusted previously
to fit the inclusive charged particle multiplicity distribu-
tion in p+p collisions at 7 TeV.

A given configuration of the color charge densities for
the colliding protons ⇢a
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(x?) in each event is sampled

from a Gaussian distribution
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s)/0.45, in

which the spatial distribution of the saturation scale
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s) at a given energy

p
s in the IP-Sat

model obtained by iteratively solving the relation x =
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(x?, x)/
p
s.

II. SAMPLING GLUONS AFTER ⌧ ⇠ 1/QS

The gluon multiplicity density dN

g

/dyd

2

k
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is calcu-
lated at time ⌧ = 0.4 fm according to the expression
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with N = 400 being the number of lattice sites (with a
length of L = 8 fm) in one dimension, here

k̃
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= 4


sin2

k

x

2
+ sin2

k

y

2
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, (5)

is the e↵ective lattice momentum squared at each lattice
point.
The e↵ect of running coupling is introduced by multi-

plying Eq.4 with a e↵ective factor of g2/(4⇡↵
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(µ̃)) where
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with µ

0

= 0.5GeV, c = 0.2. For N
c

= 3, � = 11�2N
F

/3
with N

F

= 3, ⇤
QCD

=0.2GeV.
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FIG. 1. Initial distribution of gluon density for a single IP-

Glasma event and a single configuration of the the sampled

gluons in momentum space shown by black points.

Here the scale for running is chose to be µ = k̃

T

, de-
fined in Eq.5. Assuming boost invariant distributions,
a the total number of gluons N

g

in a given event over
a range of rapidity �y

max

can be obtained by integrat-
ing Eq.4 over a maximum transverse momentum range
of kT,max

. For every event N

g

number of gluons are
sampled with transverse momentum distributed accord-
ing to Eq.4 with uniform distribution in rapidity over
the range of �y

max

. The value of kT,max

and �y

max

over which the gluons are sampled are parameters in
this study. The value of y

max

can vary in the range
0 < |y

max

| < log(
p
s/2m

p

), with m

p

being the mass of
a proton. The maximum range of transverse momentum
for sampling the gluons is chosen to be k

T,max

= 10 GeV.
The distribution of initial gluon density at time ⌧ = 0.4
fm and the position of sampled gluons are shown in Fig.1.

III. RECONNECTION OF STRINGS

Input to the Lund fragmentation algorithm in
PYTHIA are color neutral strings in momentum space

Bulk observables in p+p collisions using Yang-Mill dynamics and Lund string
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and �y

max

over which the gluons are sampled are parameters in
this study. The value of y

max

can vary in the range
0 < |y

max

| < log(
p
s/2m

p

), with m

p

being the mass of
a proton. The maximum range of transverse momentum
for sampling the gluons is chosen to be k

T,max

= 10 GeV.
The distribution of initial gluon density at time ⌧ = 0.4
fm and the position of sampled gluons are shown in Fig.1.

III. RECONNECTION OF STRINGS

Input to the Lund fragmentation algorithm in
PYTHIA are color neutral strings in momentum space

τ ∼ 1/QS

Step-I : sample gluons from IP-Glasma  



Qualitative Picture : Small systems

low multiplicity events

mini-jets escape

high multiplicity events

mini-jets quenched

3

sensitive  
to non-equilibrium

FIG. 2. Illustration of long-range azimuthal correlations
in small systems, a slightly modified version of the figure
from [54].

Clearly the aforementioned examples illustrate that it
is important to consider both initial state momentum
space correlations and the response to the initial state
geometry due to final state e↵ects in order to describe
azimuthal correlations in small systems over a wide kine-
matic range. Our qualitative expectation is illustrated
in Fig. 2, where the azimuthal correlation strength due
to initial state and final state e↵ects is shown versus the
event multiplicity e.g. in p+p collisions for a fixed trans-
verse momentum range e.g. 1�3 GeV. Based on our
discussion we expect that in low multiplicity or min-bias
events the azimuthal correlations between 1�3 GeV par-
ticles are pre-dominantly due to back-to-back mini-jets
(peaked at �� = ⇡). With increasing event-multiplicity
the contribution from multi-parton processes, such as the
”Glasma graphs” (Sec. II C 3), becomes increasingly im-
portant resulting azimuthal correlations that has sym-
metric structure in relative azimuthal angle �� around
⇡/2. When increasing the multiplicities even further, fi-
nal state interactions in this transverse momentum re-
gion can no longer be neglected at some point and lead
to a depletion of initial state correlations. Even though
min-jets do not fully equilibrate yet, the system starts
to show a response to the initial state geometry, which
in this low opacity region is presumably dominated by
the path length dependence of the parton energy loss –
also referred to as parton escape mechanism [53]. Ulti-
mately, in the limit of very high multiplicities, mini-jets
are fully quenched resulting in the formation of a ther-
malized medium and the complete loss of initial state mo-
mentum space correlations. In this high opacity regime,
azimuthal correlations are dominated by the response to
initial geometry described by a hydrodynamic expansion
of a thermalized Quark-Gluon plasma.

One can attempt to further estimate the multiplicities
corresponding to the transitions from the initial state to
the final state dominated regime, exploiting recent theo-
retical progress in the understanding of the equilibration
process [55]. Since the equilibration time at weak cou-

pling corresponds to the time scale when a semi-hard
parton ⇠ Q

s

looses all its energy to form a soft thermal
bath, one naturally expects the cross-over from the initial
state to final state dominated regime to occur when the
associated equilibration time ⌧

eq

becomes comparable to
the system size R. Conversely, as long as ⌧

eq

� R typical
semi-hard partons escape without encountering signifi-
cant final state interactions, whereas for ⌧

eq

⌧ R semi-
hard partons are fully quenched, equilibrium is reached
early on and the dynamics is dominated by the subse-
quent hydrodynamic expansion. Based on the estimate of

the equilibration time Q
s

⌧
eq

' 10(⌘/s)4/3
Teq

(g2N
c

)1/3 ' 10

for (⌘/s)
Teq ' 5/4⇡ at realistic coupling g2N

c

' 10
[56, 57] and the multiplicity dN/dy ' ⇠Q2

s

⇡R2 with
⇠ ' 1/4 [58] we obtain that

⌧
eq

R
'

s
100

dN/dy
, (1)

corresponding to a cross-over at around dN/dy ⇠ 100,
which in fact is much larger than the min-bias multi-
plicities reached in p + p or p + Pb collisions [59]. We
caution however that the estimate in Eq. (1) is inferred
from leading order weak-coupling calculations and should
only serve as a ballpark figure.
Beyond simple analytic estimates probably a promis-

ing alternative approach is to directly attempt an ex-
traction of the boundaries between the di↵erent regimes
through detailed comparisons of theory and experiment.
While a first principle theoretical description is compli-
cated throughout most of the multiplicity regimes shown
in Fig. 2, significant theoretical progress has been made
in understanding the features of initial state correlations
in the regime where final state e↵ects can be neglected.
In the following we will review the theoretical computa-
tion of initial state correlations in the Color-Glass Con-
densate (CGC) e↵ective field theory of high-energy QCD
and critically access to what extent these calculations are
compatible with the experimental observations.

II. MULTI-PARTICLE PRODUCTION IN THE
CGC FRAMEWORK

A. High multiplicity events

Experimental observation suggest that long-range
ridge like correlations in small colliding systems appear
only in high multiplicity events. Before we turn to a
more detailed discussion of possible mechanisms to pro-
duce such correlations, a first necessary step is to under-
stand the origin of high multiplicity events that populate
the long tail of experimental multiplicity distributions.
Considering the most elementary case of p+p collisions,
high multiplicity events are a consequence of three major
sources of fluctuations

1) geometry of collisions

A Phase Diagram of Correlation
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fig: S. Schlichting (QM’2015)



Azimuthal Correlations in CGC

⇠ Q�1
s

~E
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• Intrinsic momentum space 
correlation from initial state  

• Originate from partons (probe) 
scattering off a color domain 
(target) 

• Suppressed by number of 
color sources / domains 

Very distinct from Hydrodynamic flow (driven by geometry )

Kovner, Lublinsky 1012.3398

Lappi, Schenke, Schlichting, Venugopalan 1509.03499
Dumitru, Giannini 1406.5781                                          

Dumitru, Dusling, Gelis, Jalilian-Marian, 
.     Lappi, Venugopalan 1009.5295

Dusling, Venugopalan 1201.2658
Kovchegov, Wertepny 1212.1195



Azimuthal correlations (after fragmentation)
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