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OUTLOOK

Final state variables and particle correlation results will be shown and discussed
under a Multiple Parton Interaction (MPI) interpretation.

®  Final state multiplicity
= Pseudorapidity and Transverse-momentum distributions of charged particles
®  Hadronic Event Shape
"  Forward Energy Measurement

" Particle correlation

®  Long-Range Near-Side Two particle angular correlation results at 13 TeV
= Collectivity of strange hadrons

= MPI as a way to understand LRNS
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PSEUDORAPIDITY AND TRANSVERSE MOMENTUM
DISTRIBUTIONS FOR CHARGED PARTICLES

Measurements of particle yields and kinematic distributions are essential in exploiting the

energy regimes of particle collisions at the LHC.
Eur. Phys. J. C 74 (2014) 3053

®  Charged particle pseudorapidity distribution:

1 dNcp _ Cr2EZMEZpTNtracks(M,pTN)Wiracks(M,pT.N)Wepent (M,N12)
Nepents dn ANZpMNepyt(M)wepent(M,nT2)

where Wirqcks ANd Wepents are correction factors and Cr, accounts for the track
reconstruction efficiency

®  Charged particle pT distribution:

1 dNcp _ ZyNtracks(MPTieading) C(PTieading) CT2(PTleading)

Neyents APTleading Nevents'APTleading

where C is the correction to stable particle level
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PSEUDORAPIDITY AND TRANSVERSE MOMENTUM
DISTRIBUTIONS FOR CHARGED PARTICLES >
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= Studies on pseudorapidity and transverse momentum distributions led to the formulation of MPI theories in order to

explain the disagreement data-MC

= From the 8 TeV analysis: interesting study on a wide pseudorapidity spectrum triggered by TOTEM

= Tunes based on Underlying Event variables do the best job in describing data (Gunnellini’s talk)

= Comparison data-MC shows that models tuned on MPI observables better describe data.
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dNc/dniy < 0.5

PSEUDORAPIDITY AND TRANSVERSE MOMENTUM
DISTRIBUTIONS FOR CHARGED PARTICLES

Energy dependence of pseudorapidity and pT
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HADRONIC EVENT SHAPE

Tranverse thrust: 7, = 1 — maxj, lezﬁT—jﬁT' Sphericity: S = %(/12 + A3) and Transverse Sphericity:
iPT,i 21 '
7, = 0 for perfectly balanced two-jet events and S, = ——= wherely, 1, and 13 are the normalized

A1+,
7,= (1-2/m) in isotropic multijet events. eigenvalues (4; < 1, < A3) of the momentum tensor.

Events with a large number of MPI are expected to appear with a spherical shape, especially for high multiplicity.

3035—(":‘) F"rl1>390 Gev 3 EA |‘§=I7Tev I;ll'.l'l...lté
= E ' E g5107
7 Tev T 0.2 — CMS Collaboration (. 7 Tev
E ot 3 JHEP 10 (2014) 087 -
= 0 ; = { Data 0t
£ (n) ] Total uncertainty in Dat
§ 12:— _____ . _E l;l P;:i:;'c:z ainty in Data 055 oM ATLAS Collaboration
I s | - 05E=" Phys. Rev. D 88, 032004 (2013)
Q E o= ——J e Pythia6 Perugia-P0 24sF == Data2010 —— PYTHIAB Z1 i
08 | Pythia6 DET "E - PYTHIAGAMBT2B ---- PYTHABAZ  ~°
F (0 ' ! 04" -~ PYTHAG6DW - Herwig++ UE7-2
ol 12-_ (0) ---- Pythia8 4C T R T B S B .
27 —.I ....... Herwigh+ 23 ALICE collaboration
S e S Madgraph+Pythia6-z2 Eur. Phys. J. C(2012) 72:2124
=
0.8 1 1 1 I 1 — p _;_. i e i
10 8 6 -4 -2 a0 60 720

= Transverse trust describe an higher isotropic contribution than expected in jet events
= Sphericity is higher in high-pT (and high multiplicity) events than expected
= Data/MC disagreement at large >pT
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Ratio MC/Data

FORWARD ENERGY SPECTRUM

dE/dn (GeV)
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MULTIPLICITY FOR MPI STUDIES

= Final state multiplicity

= Pseudorapidity and Transverse-momentum distributions i I So far we saw how Multiple Parton
of charged particles . Interaction can help in the
| - description of the final state
I multiplicity variables and hence the

=  Forward Energy Measurement - understanding of their dynamics

= Hadronic Event Shape

m  Particle correlation

m  Long-Range Near-Side Two particle angular correlations

®  Strangeness particles production study to access LRNS

V. MARIANI 28/11/2016 8



MULTIPLICITY FOR MPI STUDIES

= Final state multiplicity

= Pseudorapidity and Transverse-momentum distributions l I So far we saw how Multiple Parton
of charged Particles . Interaction can heIP in the
| - description of the final state
I multiplicity variables and hence the
= Forward Energy Measurement : unc_le_rstand_iljg of ttle_ir dyn_al_nics .

= Hadronic Event Shape

!

®m  Particle correlation

Multiplicity plays a key role also in
particle correlation, interplay with MPI
m  Strangeness particles production study to access LRNS can help in the results interpretation

= Long-Range Near-Side Two particle angular correlations

V. MARIANI 28/11/2016 9



PARTICLE CORRELATIONS

= Two-particle angular correlations for charged particles are studied in:
= Short range: |An| <2
= longrange:2<|An| <4.8
Given:
= Signal function: Sy (An, Ag) = > (1\/1—1) C:g;in
charged two-particle pair density in the same events

®=  Background function: By(An, Ag) = 1 g2ymixed
& : n\Aan, NZ —dAnA(l)
distribution of uncorrelated particle pairs

from two randomly selected events

Sn(AnAg) 1)> y

m  Correlation function is defined as: R (An,A¢) = <(<N) - 1) (B D)
N ,

V. MARIANI 28/11/2016 10



LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS oy

Phys. Rev. Lett. 116 (2016) 172302

p-p collisions results at 13 TeV:

CMS pp |s =13 TeV, N:"" <35 (a)
1< P, <3 GeVic

== For the low-multiplicity sample (N, °fine < 35),
i [ $aul= the dominant features is the peak near (An, Ad) =
5|g ore (0, 0) for pairs of particles originating from the same

jet. The elongated structure at Ad = T corresponds
to pairs of particles from back-to-back jets.

V. MARIANI 28/11/2016 I



LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS

p-p collisions results at 13 TeV:

cMS pp s =13 Tev, N::""'z 105 (b
1< pT < 3 GeVic

oy

Phys. Rev. Lett. 116 (2016) 172302

In high-multiplicity pp events (N, °fine > [05),
in addition to these jet-like correlation structures,
a “ridge”-like structure is clearly visible at A¢ = 0,
extending over a range of at least 4 units in |An].

Confirmed what was observed at 7 TeV

At lower energy observed in p-A and A-A
collisions

No such long-range correlations are predicted by PYTHIA.

V. MARIANI
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LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS

Phys. Rev. Lett. 116 (2016) 172302

p-p collisions results at 13 TeV:

CMS pp |s =13 Tev, N:"""’ > 105
1< P, <3 GeVic

(b)

In high-multiplicity pp events (N, °fine > [05),
in addition to these jet-like correlation structures,
a “ridge”-like structure is clearly visible at A¢ = 0,
extending over a range of at least 4 units in |An].

Confirmed what was observed at 7 TeV
: A A At lower energy observed in p-A and A-A
collisions
No such long-range correlations are predicted by PYTHIA.
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LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS

Associated yield / (GeV/c)

LRNS evolution with system size:

- CMS The long-range near-side yields have been measured for p-p,
- A PbPb |/s = 2.76 TeV - p-Pb and Pb-Pb collisions in CMS.
“*"opPb \s=5.02Tev
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A
01 o
- For a given multiplicity value the associated yield in pp
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" Possible interpretations of the “ridge-effect”: I

I . Hydrodynamic models

" 2. Multiple Parton Interaction I

| Interplay between them?? .

V. MARIANI
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STRANGE HADRONS PRODUCTION AND

CORRELATION

CMS HIN-16-010
Strange hadron production and correlations in small colliding systems provide additional insights into
the physical origin of the LRNS correlation

In order to study
the “ridge” effect
the jet contribution
has to be removed

V. MARIANI
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STRANGE HADRONS PRODUCTION AND

CORRELATION

®  The observed long-range (|An| > 2) correlations are quantified in terms of azimuthal anisotropy
Fourier harmonics (v,)

= The elliptic v, and triangular v; flow Fourier harmonics are extracted from long-range two-particle

correlations at different values of center of mass energy and for different system size

vEo(2)

v§Uo(2)

V. MARIANI
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V,:
* No energy dependence
e Qualitatively similar shape for pp, p-Pb, and Pb-Pb

Vi:

* No energy dependence

* Values for pp are slightly different from p-Pb and Pb-
Pb at higher multiplicity (N > 60)
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STRANGE HADRONS PRODUCTION AND

CORRELATION

The v, term is studied as a function of pT and particle species: at high multiplicity a
deviation of v, term among various particle species is observed.

CMS pp Vs = 13 TeV
T T T | T

T T | T T T
At low pT: o+ b Ani=2-
« K9 is higher than A/A 0 2__ n Kg __
* the lighter particle species exhibit a stronger azimuthal | o« A/K |
anisotropy signal I + +
* similar trend observed in A-A and p-Pb collisions L L ] |
& i _
At high pT: > L i ¥ ]
«  A/A higher than K? o + |
* Reverse ordering is similar to previous observation in p- i :- ' |
Pb and Pb-Pb collisions e
- . _
I offline _
Qualitatively consistent with the hydrodynamic 00 it 105 <Ng <150 B
mOdels. . 0 ! ! 1 2| I 1 ! A ! ! 1

P (GeV/c)
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WHICH ROLE PLAYED BY MPI IN LONG-RANGE

NEAR-SIDE CORRELATIONS?

For large impact parameter b the MPI tend to lie in the collision plane of the hardest interaction and
the final state particles will have similar azimuthal angle ¢ (near-side)

2. MPI would require enough interactions to explain the high multiplicity events

Incoming partons have very different x;,; hence will have interactions in a broad pseudorapidity range 1
(long range)

Adding a modification in PYTHIAG, introducing a correlation between the azimuth of the event plane of
individual MPI and the event plane of the hardest interaction

With this modification PYTHIA shows the
ridge structure for the high-multiplicity
moderate pT events.

R(an.bp)
~N "- Qo . |

BUT high multiplicity events are generally central
g collisions with an impact parameters b=0.

Van Mechelen
arXiv:1203.2048
28/11/2016 18
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CONCLUSION

"= We can study MPI in two different dynamic regimes, multiplicity studies focus on

the soft dynamics and constitute a complementary input on the Underlying
Event analysis

= MPI are unavoidable:

» Experimental evidences that MPI mechanisms are needed for a complete description of
LHC final states

» To explain the high multiplicity events in the correlation effects

= High multiplicity in the final state plays a key role:
» Still not completely understood (large deviation MC/Data in high multiplicity)
» MPI dynamics characterization and the system size dependence

> Final state correlation, i.e. the «ridge effect» (Hydro? MPI alone? CGC?AMPT?)

V. MARIANI 28/11/2016
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PSEUDORAPIDITY AND TRANSVERSE MOMENTUM
DISTRIBUTIONS FOR CHARGED PARTICLES

m  Charged particle pseudorapidity distribution:

1 dNep _ Cr2ZMEpTNiracks(M,pT M) Weracks(M,pTN)Wepent(M,n12)

Nepents dn AnZpmNept(M)wevent(M,nt2)

where Wirgcks ANd Wepents are correction factors and Cy, accounts for the track

reconstruction efficiency. M is the track multiplicity Eur. Phys. | C 74 (2014) 3053
1 1— fup(M, pr,77)

Wevent(Mr nr) = Wirack (M, p1,1]) = €track (M, p1. 1) (1 + fin(M, p1,77))

oot matched tracks(M pT 1},)
__ ‘‘reco P Ty
f np — Nggégrack candidates ( M, PT, ff)

Etig(n2) €py (M)

®  Charged particle pT distribution:

1 dNcp . antracks(U:PTleading)’C(pTleading)'CTz (pTleading)
Nevents APTieading Nevents'APT1eading ( 1 dN )gen
where C is the correction to stable particle level CP teading) = N dp1, teading
, leading (L iNg )0
N dpr, leading
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CENTRAL-FORWARD MULTIPLICITY

ANALYSIS AT 8 TEV

Pseudorapidity and transverse momentum distribution were studied by CMS collaboration at 8
TeV (Eur.Phys.).C 74 (2014) 3053) with a different trigger:

= Minimum Bias events are triggered by TOTEM T2 telescopes that cover the pseudorapidity region 5.3 < |n|
< 6.6 for tracks with pT> 40 MeV.

= The measurements was performed for tracks with pT > 0.1 GeV and pT > | GeV in two consitions:
*  Inclusive sample with tracks reconstructed in the TOTEM T2 in either hemisphere

*  Sample enhanced in non-single diffractive dissociation events by requiring tracks in T2 both forward and backward
hemispheres

m  Selection criteria:

*  Rejection of the backgrounds requiring at least one reconstructed primary vertex with at least two tracks and with
|z|<15cm around the position of the nominal interaction

«  High purity tracks are selected with pT > 0.1 GeV or pT > | GeV and relative transverse momentum uncertainty less
than 10 % within the pseudorapidity range |n|<2.4

+  Track-vertex association applied requiring d,./o,, < 3 and d,/o, < 3

*  For the measurement of the leading-track pT distribution the threshold for the tracks is 0.4 GeV
V. MARIANI 28/11/2016 23
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CENTRAL MULTIPLICITY

ANALYSIS AT I3 TEV

Phys. Lett. B 751 (2015) 143

|3 TeV results by CMS Collaborations:

= Measurements of dN,/dn in the range |n|< 2 for inelastic proton-proton collision with 2015 data taken
at 0 Tesla during a special low intensity beam configuration

= N, is defined to include decay products of particle with decay length ct < | cm, products of secondary
interactions are excluded

= Data are compared to PYTHIA8 v208 and EPOS LHC (Energy-conserving quantum mechanical multiple
scattering approach, based on Parton, Off-shell remnants, and Splitting of parton ladders)

Event selection:

Selection of inelastic collision events:

= Online: a coincidence of signals form both the BPTX devices is required (both proton bunches crossing the IP)

= Offline: at least one reconstructed interaction vertex is required

V. MARIANI 28/11/2016 24
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HADRONIC EVENT SHAPE
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Figure 1: Mean transverse sphericity as a function of charged particle multiplicity
for pp collisions at /s = 7 TeV. The statistical errors are displayed as error bars
and the systematic uncertainties as the shaded area. The results are shown for the
different event classes: (a) “bulk,” (b) “soft” and (c¢) “hard.”

V. MARIANI

MB events are analyzed

The sphericity in data is steadily
rising with multiplicity
suggesting a more isotropic
distribution of tracks in azimuth
than the models.

The general agreement
between models is better for
“soft” events while for the
“hard” ones the disagreement is
up to ~ 20% at low and high
multiplicity
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FORWARD ENERGY SPECTRUM

arXiv:1110.0211vl
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LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS
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di Fisica Nucleare
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LONG-RANGE NEAR-SIDE TWO-PARTICLE

CORRELATIONS

V. MARIANI
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Comparison between CMS data at 7 TeV (CMS-QCD-10-002) and

PYTHIAS8 in 4 range of pT bins.

Two discrepancies:

* The strength of the away-side correlation is over —or
underpredicted for almost all the bins

* PYTHIAS fails to reproduce the local maximum near A¢ = 0 in
any of the pT or multiplicity bins.

The long range, near side correlation increases in strength with
increasing multiplicity and is stronger in the bin |<pT<2 GeV
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STRANGE HADRONS PRODUCTION AND

CORRELATION

Deeper study on v, term is done evaluating this variables from simultaneously correlating several (no less
than four) particles.

= Suppress the short-range two particle correlations such as jets and resonance decays and as a

= Powerful tool to directly probe the collective nature of the observed azimuthal correlations.

CMS
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* v, {2}=v,{4}=v,{6} in pp collisions (left)

*  Qualitatively similar results seen in high multiplicity pp and pPb, as well as peripheral PbPb for v,{4} and v,{6}

* The ratio of v2{4} to v2{2} is related to the total number of fluctuating sources in the initial state of a collision.
The comparable magnitudes of v2{2} and v2{4} signals observed in pp collisions may indicate a smaller number of
initial fluctuating sources that drive the long-range correlations seen in the final state.
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Strong evidence for the collective nature of

the long-range correlations observed in pp collisions.



