

Systematics of quark/gluon tagging

Deepak Kar (for the q/g team in Les Houches 2015) Based on: arXiv:1605.04692 and work-in-progress

> MPI@LHC, Chiapas, Mexico 27th November - 2nd December, 2016

Discriminate between...

I'm a gluon. I'm the stickiest glue in the universe!

Quark/gluon discrimination

- Ideally: identify quark-initiated or gluon initiated jets.
- Is that well defined?

What is a Quark Jet?

From lunch/dinner discussions

III-Defined

What people sometimes think we mean A quark parton

A Born-level quark parton

The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3 and carrying triplet color charge

A quark operator appearing in a hard matrix element in the context of a factorization theorem

A parton-level jet object that has been quark-tagged using a soft-safe flavored jet algorithm (automatically collinear safe if you sum constituent flavors)

A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion)

3

Well-Defined What we mean

Jesse Thaler — Report of the Les Houches Quark/Gluon Subgroup

The study

• In leading order:

quark radiation $\propto C_F$, gluon radiation $\propto C_A$

- Affected strongly by subleading (perturbative and non-perturbative) effects
- Modelled in MC generators, but needs constraining by data
- Highlights modelling deficiencies

Variable

ATLAS Result(s)

Eur. Phys. J. C (2014) 74: 3023

Data-MC difference (but very optimistic!)

Discriminant composed of different observables

ATLAS-CONF-2016-034

CMS Result

CERN-CMS-DP-2016-070

Need MC reweighting to match (data) efficiencies

Discriminant

Discriminator:

$$\Delta = \frac{1}{2} \int d\lambda \, \frac{\left(p_q(\lambda) - p_g(\lambda)\right)^2}{p_q(\lambda) + p_g(\lambda)}$$

 $p_q (p_g)$ is the probability distribution for the quark jet (gluon jet) sample as a function of the classifier λ

 $\Delta \rightarrow 0$: no discrimination $\Delta \rightarrow 1$: perfect discrimination

Idealised ep collider

Quark:
$$e^+e^- \rightarrow (\gamma/Z)^* \rightarrow u\bar{u}$$
Gluon: $e^+e^- \rightarrow H^* \rightarrow gg$

$$\frac{E_{\rm jet}}{Q/2}>0.8,$$

Suppress wide angle radiation

- Useful to understand final state evolution (ignoring initial state complications)
- Vary collisions energy (Q), jet radius (R)
- Look at both hadron and parton level

Hadron Level λ_{LHA}

Good agreement LEP data available Larger spread No data available

Seperation

Pythia8 more optimistic, Herwig++ more pessimistic

Non-Perturbative Effects

Large effect of hadronisation More difference among MC models as well

Overall Separation

Large spread in discrimination power (even more at hadron level)

Dependance on R

Separation increases with R (more phase space?)

Dependance on Q

Separation increases with Q at parton level (more phase space?)

Dependance on α_s

No clear trend at parton level, except Herwig++, rest decreases at hadron level

Proton-proton Results

- Very preliminary
- Z+jets (quark enriched), dijets (gluon enriched)
- Shown standard jets, but mMDT /Soft drop effects also looked at

Hadron Level λ_{LHA}

Decent agreement

Larger Difference

Separation

Separation

Pythia more optimistic

Opposite trend

Summary

- Important physics applications
- Large effect for generator setting, nonperturbative/shower effects
- Need (unfolded) measurements, specially for gluon processes