Measurement of Underlying Event Observables with the ATLAS detector

Róbert Astaloš

(Comenius University Bratislava)

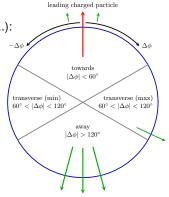
on behalf of the ATLAS Collaboration

MPI @ LHC 2016 – VIII International Workshop on Multiple Partonic Interactions at the LHC San Cristóbal de las Casas, Chiapas, Mexico, 28 November - 2 December 2016

November 28, 2016

- Measurement of charged-particle distributions sensitive to underlying event in $\sqrt{s} = 13$ TeV proton-proton collisions with the ATLAS detector at the LHC – Preliminary results
- Measurement of event-shape observables in $Z \rightarrow \ell^+ \ell^-$ events in *pp* collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC Eur. Phys. J. C. (2016) 76:375, arXiv:1602.08980

- Underlying Event = soft processes unavoidably accompanying hard parton-parton scatterings in pp collisions with a high momentum transfer
 - interactions between proton remnants, MPI, initial and final state QCD radiation
- Soft interactions not reliably calculable by theory dominated by low-scale QCD interactions, in which the strong coupling strength diverges and pertubative methods of QCD lose predictivity


 \Rightarrow described by phenomenological models, implemented in MC event generators

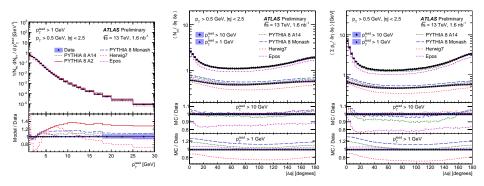
 \Rightarrow contain many free parameters which are needed to be constrained by measurements.

Measurement of Underlying Event

- η, φ plane divided into regions around leading (the highest p_T) object (track, calo. cluster, jet...):
 - $|\Delta \varphi| < 60^{\circ}$ toward
 - $60^{\circ} < |\Delta \varphi| < 120^{\circ}$ transverse
 - $|\Delta \varphi| > 120^{\circ}$ away
- towards and away regions dominated by particle production from the hard process
 → relatively insensitive to the softer UE
- transverse region more sensitive to UE

further subdivision of the observables on an event-by-event basis depending on which side of the event is more activity:

- **trans-max**: observables in the more-active transverse region (higher $\sum p_T$) includes both MPI and hard-process contamination
- trans-min: observables in the less-active transverse region (lower ∑ p_T) most sensitive to MPI effects (pedestal)
- trans-diff: difference of trans-max and trans-min clearest measure of hard-process contamination

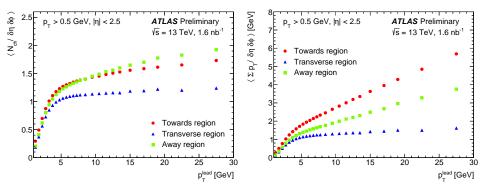

Observable	Description
binned variables	
$ ho_{ m T}^{ m lead}$	Transverse momentum of the leading charged particle
$ \Delta \phi $	Absolute difference in particle azimuthal angle from the leading particle
unbinned variables	
$\left< {\it N_{ch}}/{\delta\eta\delta\phi} \right>$	Mean number of charged particles per unit $\eta-\phi$ (in radians)
$\left<\sum {m ho}_{ m T}/\delta\eta\delta\phi \right>$	Mean scalar ${\pmb p}_{ m T}$ sum of charged particles per unit $\eta-\phi$ (in radians)

 $\begin{array}{l} \delta\phi=2\pi/3-\text{for toward, away an transverse regions}\\ \pi/3-\text{for the single-sided trans-min and trans-max regions}\\ 2\pi/n_{\text{bins}}-\text{for each of the }n_{\text{bins}} \text{ equally-sized bins in }|\Delta\phi| \text{ distributions}\\ \delta\eta=5 \text{ in all cases} \end{array}$

mostly dependences of these quantities on the p_T^{lead} : low \rightarrow high $p_T^{lead} \propto$ smooth transition: minimum bias \rightarrow hard scattering regime

- $\sqrt{s} = 13$ TeV data taken in a special configuration of the LHC: low beam currents, reduced beam focusing, producing a low mean number of interactions per bunch (0.003 $\leq \langle \mu \rangle \leq 0.03$)
- trigger: one or more MBTS counters above treshold on either side of the detector
- integrated luminosity of 1.6 nb⁻¹
- events: required to contain 1 reconstructed vertex from ≥ 2 tracks with $p_{\rm T} > 100 \text{ MeV}$ required to contain at least one track with $p_{\rm T}^{\rm lead} > 1 \text{ GeV}$ corrected to the particle level, including a correction for leading particle realignment 66 million data events passed the trigger and vertex selection
- track selection criteria: $p_{\rm T}$ > 0.5 GeV; $|\eta|$ < 2.5

Leading charged particle $p_{\rm T}$ and Angular distributions

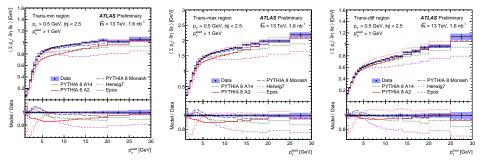


 N_{ev} vs ρ_T^{lead} : steeply falling distribution with a change of slope for $\rho_T^{lead} \ge 5$ GeV broadly modelled by all generators, best description by EPOS and PYTHIA 8 A14

 $p_T^{lead} > 1 \text{ GeV} \rightarrow p_T^{lead} > 10 \text{ GeV} - \text{transition from relatively isotropic minimum bias}$ scattering to the emergence of hard partonic scattering structure and a dominant axis of energy flow, no clear best MC:

more inclusive selection ($\rho_T^{lead} > 1 \text{ GeV}$) – EPOS hard-scattering selection ($\rho_T^{lead} > 10 \text{ GeV}$) – HERWIG7 and Pythia 8 Monash

N_{ch} and $\sum p_{T}$ densities in azimuthal regions

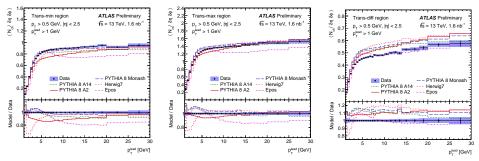


general shape: first very rapid rise in activity – 3 regions not strongly distinguished abrupt transition at $p_T^{lead} \approx 5$ GeV, above it distinct behavior of 3 regions

different shape of the *transverse* region: almost completely plateaus after $p_{T}^{lead} \approx 5 \text{ GeV}$ \rightarrow hard process dominates the *towards* and *away* regions, which continue to increase in activity as the hard process scale grows, but *transverse* region is relatively unaffected

 $p_T^{\text{lead}} > 7 \text{ GeV:}$ *away* region with highest multiplicity, despite not containing p_T^{lead} track the *towards* region is the most active by $\sum p_T$ for all p_T^{lead} values

$\sum p_{\rm T}$ densities in trans-min/max/diff regions



trans-min: best description by PYTHIA 8 Monash and Herwig7 (in the plateau region) PYTHIA 8 A2 (mild but broad undershoot extending up to $p_T^{\text{lead}} \approx 20 \text{ GeV}$) and Herwig7 (severe undershoot for $p_T^{\text{lead}} < 5 \text{ GeV}$) mismodel the transition trans-max: similar, undershoot of PYTHIA 8 A2 slightly better trans-diff: best description by PYTHIA 8 Monash and A2 tunes

EPOS not able to model the level of underlying event activity for higher p_{T}^{lead}

PYTHIA 8 A14 used much for the hard process simulation in ATLAS predicts activity $\sim 10\%$ below the data \rightarrow some re-tuning for 13 TeV event modelling may yield performance benefits

N_{ch} densities in trans-min/max/diff regions

trans-min: same as in case of $\sum p_{\rm T}$

trans-max: models cluster together more tightly providing good description for $p_{\rm T}^{\rm lead} > 10~{\rm GeV}$ except EPOS

trans-diff: mostly flat $\sim 10\%$ overshoots from all models except EPOS

no obvious best model for all observables: PYTHIA 8 Monash agrees well except of trans-diff \textit{N}_{ch} density & Herwig7 has comparable performance for $\textit{p}_{T}^{\rm lead} > 5~GeV$

Event shape observables in $Z \rightarrow \ell^+ \ell^-$ events at 7 TeV

Event Shapes = observables that describe the patterns, correlations, and origins of the energy flow in an interaction

- sensitive to UE properties
- quantities that are experimentally easy to access
- enable detailed tests of phenomenological QCD models
 ⇒ input for tuning MC generators
- ratios of final state observables ⇒ reduced sensitivity to theoretical and experimental uncertainties

events containing $Z
ightarrow e^+ e^-$ or $Z
ightarrow \mu^+ \mu^-$

Z-boson – without colour charge \rightarrow does not affect hadronic activity in the collision observables calculated using charged particles excluding the Z-boson decay products

observables measured in different ranges of the Z-boson transverse momentum $p_T(\ell^+\ell^-)$: 0 – 6; 6 – 12; 12 – 25; \geq 25 GeV

small $p_{T}(\ell^{+}\ell^{-})$ values – low jet activity from the hard process \rightarrow high sensitivity to UE high $p_{T}(\ell^{+}\ell^{-})$ values – at least one high p_{T} jet recoiling against the $\ell^{+}\ell^{-}$ system \rightarrow reasonably described by pertubative calculations of the hard process Normalized distributions: $(1/N_{ev})dN/dO$

- $N_{\rm ev}$ number of all selected events
- $\ensuremath{\mathcal{O}}$ are following observables:
- N_{ch} charged particle multiplicity
- $\sum p_{\rm T}$ scalar sum of transverse momenta of selected charged particles in the event
- The Beam thrust B = ∑p_T · e^{-|η|} sum over all selected charged particles of transverse momentum weighted by rapidity

 → contributions from forward and backward particles suppressed
 ∑p_T and B have different sensitivities to hadronic activity from initial-state radiation

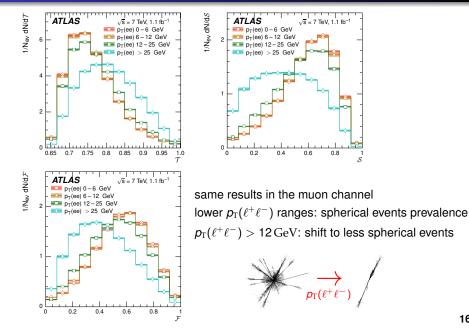
Transverse Thrust T, Spherocity S and F-parameter

 $\mathcal{F} = \frac{\lambda_1}{\lambda_2};$ $\lambda_1 < \lambda_2$ - two eigenvalues of the transverse momentum tensor M^{lin} :

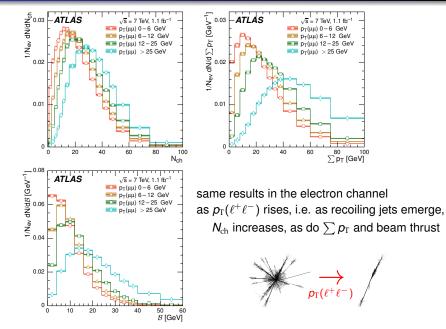
$$M^{\text{lin}} = \sum_{i} \frac{1}{\rho_{\text{T},i}} \begin{pmatrix} \rho_{x,i}^2 & \rho_{x,i} \rho_{y,i} \\ \rho_{x,i} \rho_{y,i} & \rho_{y,i}^2 \end{pmatrix}$$

- the sum over the $\vec{p}_{T,i}$ of all charged particles in the event
- \hat{n}_{\perp} the unit vector of the *thrust axis* maximizing the expression found iteratively
- *n* vector in the transverse plane which minimises the expression coincides with one of the transverse momentum vectors *p*_{T,i}

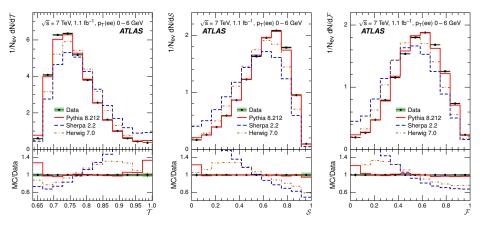
 $\frac{1}{2/\pi}$


 $\sqrt{s} = 7$ TeV data collected in 2011 requiring a Z boson candidate decaying to an e^+e^- or $\mu^+\mu^-$ pair - restricted to a subsample with mean number of *pp* collisions per bunch crossing ~ 5 and not > 7 to reduce PU (integrated luminosity $\approx 1.1 \text{ fb}^{-1}$)

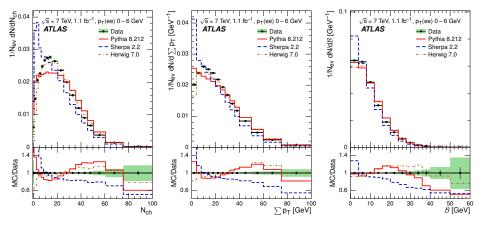
- events were required to contain a primary vertex the vertex with the highest $\sum (p_T^{trk})^2$ to reject events from cosmic-ray muons and other non-collision backgr. vertex must have at least one track with $p_T > 400 \text{ MeV}$
- selected electrons and muons were required $p_T > 20$ GeV and $|\eta| < 2.4$ for electrons $1.37 < |\eta| < 1.52$ also excluded passive detector material in ECAL
- $Z \to \ell^+ \ell^-$ signal events, when $m_{\ell^+ \ell^-} \in [66, 116]$ GeV
- $\bullet~2.6\times10^5$ events in electron channel and 4.1×10^5 in muon channel passed
- track selection criteria: $p_{\rm T} > 0.5 \text{ GeV}$; $|\eta| < 2.5$


Corrections

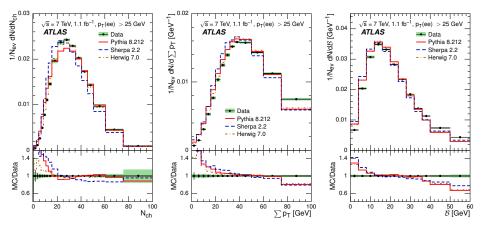
- Lepton track removal: e^{\pm} can interact with material in front of the ECAL
 - \rightarrow bremsstrahlung & photon conversion \rightarrow multiple tracks
 - ightarrow tracks not used if they fell inside a cone of $\Delta R_{e,trk} = 0.1$ around any selected e^{\pm}
 - \rightarrow applied also to the muon channel to treat two channels as similarly as possible
- Pile-up correction: Hit Backspace Once More (HBOM) approach: arXiv:1012.5104, New J. Phys. **13**, 053033 (2011)
- Background treatment: only for multijet events with misidentified lepton candidates → estimated from data
- **Unfolding**: \mathcal{O} corrected for contributions from non-primary particles, detector efficiency and resolution effects, Bayesian approach, PYTHIA 8 and SHERPA


Transverse Thrust, Spherocity and \mathcal{F} -Parameter

Observables depending explicitly on $N_{\rm ch}$



Event Shape Observables for $p_T(\ell^+\ell^-) < 6 \,\text{GeV}$


- *p*_T(ℓ⁺ℓ⁻) < 6 GeV bin: expected to be characterised by low jet activity → particularly sensitive to UE characteristics
- PYTHIA 8 shows very good agreement with the data
- very similar results in the muon channel

Observables depending on N_{ch} for $p_{T}(\ell^{+}\ell^{-}) < 6 \,\text{GeV}$

- none of the generators succeeding fully, very similar results in the muon channel
- best agreement for HERWIG7, followed by PYTHIA 8
- low $N_{\rm ch}$ and $\sum p_{\rm T}$ values: challenging region for all 3 generators
 - \rightarrow sensitive to the way beam-remnant interactions are modelled in the MC
 - \rightarrow better agreement for ${\cal B}$ where tracks with larger $|\eta^{trk}|$ are suppressed

Observables depending on N_{ch} for $p_T(\ell^+\ell^-) > 25 \text{GeV}$

*p*_T(ℓ⁺ℓ⁻) > 25 GeV bin: expected to contain at least one jet of high transverse momentum recoiling against the Z boson →well described by the hard matrix element

- better agreement than for $p_{\rm T}(\ell^+\ell^-) < 6 \,{
 m GeV}$, but still significant deviation
- best agreement for HERWIG7, followed by PYTHIA 8

Summary

Underlying event at $\sqrt{s} = 13$ TeV:

- no obvious best model for all observables: PYTHIA 8 Monash agrees well except of trans-diff N_{ch} density & Herwig7 comparable for p_T^{lead} > 5 GeV
- trans-diff N_{ch} density: mostly flat $\sim 10\%$ overshoots from all models but EPOS
- EPOS particular discrepant features for higher p_T^{lead}
- PYTHIA 8 A14 predicts activity ~ 5 10% below the data except trans-diff N_{ch} density

Event shape observables in $Z \rightarrow \ell^+ \ell^-$ events at $\sqrt{s} =$ 7 TeV:

- better predictions of all 3 MC generators at high p_T(ℓ⁺ℓ[−]) and for the observables that are less sensitive to the number of charged particles in the event (transverse thrust, spherocity, and *F*-parameter) PYTHIA 8 best
- significant differences from data at low values of N_{ch}, ∑p_T and beam thrust in certain p_T(ℓ⁺ℓ⁻) regions