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Outline of this Talk

The main objective of this talk is show how string theory, through the AdS/CFT
correspondence, can be applied to the study of high-temperature superconductivity

e A Motivation: High-Temperature Superconductivity and its problems

How does AdS/CFT can help us understand high-temperature superconductivity =
Holographic Superconductivity

Ginzburg-Landau Approach to Holographic Superconductivity

Holographic Superconductivity with Lifshitz Scaling



Motivation: High-Temperature Superconductors

e Also known as Cuprates: Anti-Ferromagnetic ceramics that become SC after doping
e High-T. Superconductors have a very rich, almost universal phase diagram

e Superconducting Phase: The Dome

e T. ~90K. Usual SC has T, < 30K
o d-Wave Order Parameter:

Ay ~ cos kz — cos ky

e Normal Phase: Strange Metal

e Meaning Non-Fermi Liquid behaviour:

e Linear inverse quasi-particle lifetime:

e Linear Resistivity:



Cuprates: A Hidden Quantum Critical Point

e Conjecture: There is a “hidden” Quantum Critical Point (QCP) inside the superconducting
dome, that would induce strong quantum fluctuations leading to a NFL behavior. This is the
starting point of many QFT models of the cuprates

e A strong candidate for such a model is the Spin-Fermion Model.

-[Abanov, Chubukov, Schmalian. Adv.Phys. 52], [Melitsky, Sachdev. Phys.Rev.B 82]

-It proposes electron pairing mediated by Spin Density Wave Sy,.

-It makes very successful predictions: SC Instability, d-wave order parameter, NFL liquid
behaviour from one loop corrections in the self energy

It has serious limitations:

e It has a strong coupling: \ ~ 2, while for
usual Superconductors A ~ 0.3

e There is a quasi-particle picture
breakdown at the hot-spots of the Fermi
Surface of the cuprates




High-7,. Superconductors: Thinking Outside of the Box

e Standard QFT approaches result in strongly coupled theories, with sometimes a breakdown
of basic interacting many-body theoretical assumptions

e We need to look for a different approach to the problem
e We can try to apply the AdS/CFT correspondence using the following motivation...



Enter the AdS/CFT Correspondence

e AdS/CFT Correspondence: Rough Statement

Large-N Strongly Coupled Classical Anti-deSitter
Quantum SU(N) Gauge Field Theory «+— Gravitational Theory
in d Dimensions in d+1 Dimensions
(BOUNDARY THEORY) (BULK THEORY)

e What part can it play in SC: Motivation
e Using the correspondence, we can look for the superconducting phase of these particular
strongly-coupled QFT’s by studying the equivalent, tractable classical dynamics of the
dual gravitational system

e Then, look for universal phenomena shared by real-world cuprates
That is: look for both theories to belong to the same universality class



AdS/CFT: The Dictionary. Essential Vocabulary

e The Dictionary: Scalar Fields
e AdSg11 Spacetime in the bulk

ds® = ——dt2 + —dr +7 da':‘2
e The r-coordinate is the Radial Dimension
r =0 (AdS “Horizon") r = oo (AdS Boundary)
e Massive Bulk Scalar Field ¥ (r, z#).

%o o
Y(r — s —— +
(r — oo, z#) =~ Aoty

A (A —d) = L?>m?

e Translation (The Master Equation):

e~ Terr(vo] — <eXp—/1/JOO> — e SClassical Gravity [¥]
CFT

1o : Source O : VEV, Dimension A



AdS/CFT: The Dictionary. Essential Vocabulary

e The Dictionary: Gauge Fields
e AdS44+1 Spacetime in the bulk

2

2 _
ds* = Iz

dt? + f—;dﬂ + %Zd:#
e The r-coordinate is the Radial Dimension.

r =0 (AdS “Horizon") r = oo (AdS Boundary)
e Bulk Gauge Field A, (r,z").

Ja

a2
A= Aq(r,zt)dX®

e Translation (The Master Equation):

<exp _ /Sajo‘> — ¢~ SClassical Gravitiy [4]
CFT

Sa : Source Jo : VEV

Aa(r — oo, zt) & Sa + +



Holographic Superconductor: A D=4+1 Basic Realization

Inspired on [Hartnoll, Herzog, Horowitz. JHEP 0812 (2008)] in D=3+1
The following is based on [Dector. JHEP 1412 (2015)] in D=4+1

e Basic Bulk Model in D=4+1
12
Sgulk = /dsx\/g}{R _1lp + 15 1o —igA|? —m? |\p\2}

e Basic Ansatz
dr?
ds? = —g(r)e X(Ma? 4 —— o) +r2di?_,
g(r

A= &(r)dt, U = (r)/V2

e Scalar field ¥(r) is dual to s-wave SC order parameter. Mass above BF Bound m? > —4

e We will look for asymptotically AdSs BH solutions that introduce Temperature

o &(r — o0) = p— p/r? 4 ---. Following the AdS/CFT dictionary, p is charge density,
chemical potential. We always work in the canonical ensemble, p fixed to unity

e Action has U(1) local symmetry — U(1) global symmetry in boundary theory. We assume
we can gauge it and have a SC interpretation

e We will work with full back-reacted solutions and using the shooting method
e Normal Phase: ¥(r) = 0, Exact AdS-RN-BH solution



Different Phases: Superconducting Phase

e The Superconducting Instability

e There can be an scalar field instability in the near-horizon region of the normal solution,
ridden by the scalar charge ¢ and leading to scalar hairy BH solutions. Finding these hairy
solutions translates to U(1) symmetry breaking and condensation in the dual QFT

o Set scalar mass m2 = —3

e Scalar charge ¢ is input parameter
and consider different values of g to
probe phenomenology

o The EOMs give the asymptotics

ci O
PY(r — 00) & —+—3+

e Solve using boundary condition 0.05" ]
_ : . g=1
C1 = 0, meaning Unsourced
Spontaneous Condensation 0.00
e SC Order Parameter is O3 0.000 0.001 0002 0003 0004 0.005
Model predicts near-T. behavior T
O3 ~ (1 —T/T.)"/? 3

as real-world superconductors



Bulk Field Perturbations

o Field Perturbations: Gauge Field A,
e We consider a small perturbation to the gauge field

A= ®(r)dt + e Y A (1) da

e The A; EOM gives the asymptotics

J.

Ax(r—>oo)zA§CO)+r—;+-~ 1.0 .
AQ(EO): Dual Vector Potential 0.8 ]
Jz: Its Conjugated Current

e We can relate these trough the E 0.6 1
London Equation 2/3
q P 04 ]
0
Jo = —*n ALY 02 ]
ns: SC Number Density
o Define for simplicity 0.0 -
ng = q2ns = _Jm/AgO) L
Y3

Physical near-T. behaviour

s ~ (1 —T/Ts)



Bulk Field Perturbations

e Field Perturbations: Scalar Field ¢

o Likewise, we consider a small harmonic perturbation to the scalar field

Wry) = — (wr) + c*on(r)

e The n EOM can be written as an
eigenvalue equation

L{n} =k

e We solve for Permitted
Eigenvalues of Wave Number k

V2

0.00 0.05 0.10 0.15 0.20 0.25



The Bottom-Up Approach to Holographic Superconductivity

e Taking a Step Back: What are we doing?
e We are following the Bottom-Up Approach to Holographic Superconductivity
e Very Phenomenological. Start from simple, hand-made bulk models.
e One has a broad input parameter space: m?, ¢, Potential Terms, etc.

e One can realize tractable computations and probe the superconducting phenomenology of
the dual QFT theory

e However, from the context of the AdS/CFT correspondence:
e One cannot “track up” the bulk model back to full Type IIB String Theory origin

e We do not know the details of the dual QFT and the particular condensing operators

To have some basic knowledge of the dual field theory, we can always follow the same intuition
developed by Ginzburg and Landau...



Enter Ginzburg-Landau Approach

e Ginzburg-Landau Effective Boundary Action

e We propose that our boundary theory can be described effectively near the critical
temperature by

1
stemi s [ ta fawa?+ & val + Jlova — igavaf+--- |

e Microscopic DOF's are hidden in GL order parameter |Ug |

e This is the original phenomenological intuition followed by GL to explain SC, without
knowing the microscopic details of electron pairing

e Constructing the GL Boundary Action

To construct the GL boundary action in a self-consistent manner, we must then:
e Identify holographically the GL order parameter |¥g_ |
e Compute holographically the GL coefficients «, 8
e Check with standard GL Theory predictions



Determining Ginzburg-Landau: The GL Order Parameter

e The Ginzburg-Landau Order Parameter |¥g |
e Since GL theory predicts
WLl ~ (1 —T/Te)"/?
which has the same critical exponent as O3. We match exponents and simply propose
[Tl = N,O3
where we can compute holographically the proportionality constant Ny, given by

1
7 qCoTe(q)

e Thus, the GL order parameter is holographically identified.



Determining Ginzburg-Landau: The Characteristic Lengths

e The Penetration Length A
e Measure exponential decay of magnetic fields inside superconductor
e It can be holographically computed directly from 7s. According to GL Theory

1
A=
VAarng
3.0 T T : . .
2.5 B
2.0r B
pYe0 1.5F ]
1.0f 1
qg=4
0.5 B
00 L L L L L
0.05 0.10 0.15 0.20 0.25
T
ol
e Model predicts a near-T. behaviour
1

~

(1=T/T:)'/?

as measured in Real-World Superconductors



Determining Ginzburg-Landau: The Characteristic Lengths

e The Coherence Length ¢

e Measure of exponential decay of perturbations of the order parameter
e It can be holographically computed directly from the wave number k. Indeed, the coherence
length £ is the inverse of the pole of the correlation function written in Fourier Space

1
k2 4+ 1/€2 €] =1/ [k|

3.0 T T T T i

(O(K)O(=FK)) ~

2.5
2.0
& 1.5
1.0

0.5

0.0 .
0.00 0.05 0.10 0.15 0.20 0.25

R

e Model predicts a near-T. behaviour as Real-World Superconductors
1

S~ AT



Determining Ginzburg-Landau: The Ginzburg-Landau Coefficients

e The Ginzburg-Landau Coefficients o and 3

e Having computed the characteristic lengths, we now can compute the GL Coefficients.
The a and B coefficients are then given ultimately by the concise expressions

o = 1 5= qCoT. 1
42 - 202
4¢ 4 02
1 80f
] 60r
123
"B a0l
] 20¢
o ‘ ‘ ‘ ™~ ol ‘ ‘ ‘ ‘
0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25
T T
p1/3 p1/3

e They have the near-T, behaviour required by GL
laf ~ a1 (1 —T/Te) B~ Bo+p1(1—T/Tc)

In particular, the 3 functional relation is quite non-trivial, coming from 8 ~ (03&)~2



Consistency of our Ginzburg-Landau Approach

e So, having determined holographically the effective GL boundary action, let’s look for some
ways to check its consistency...



Some Checks: The Free Energy

e The Helmholtz Free Energy

e We can calculate the Helmholtz FE difference Af = fsc — fn. By standard holographic
methods we must calculate the on-shell value of the regulated gravitational action at the
boundary. Part of the usual holographic toolkit

e On the other hand, according to GL theory, we approximate this Helmholtz FE as

B 4 103
Afel ~a|Ue P+ 2otz -—r 23
feL WeLl™ + 5 [Well 84C0T. €
0.000C
-0.0002
af
F —0.0004

—0.000€-

-0.000¢

0.256 0.258 0.260
T

1/3
Y

20



Some Checks: The Free Energy

e The Helmholtz Free Energy: A Comparison
e We can compare the ratio of both results, and find Excellent Agreement

[ g e e~ . -]

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.0t L L L L E|
T 5 10 15 20
o q

e We can further also with [Herzog, Kovtun, Son. Phys.Rev.D 79 (2009)]
e In a Nutshell: Computed FE — Fitted to a GL form — Found numerically a and 8
e Using their method, one finds (g = 4)

o) =4.41(1 = T/Te) B =10.95+36.75(1 — T/T.)
e Whereas, in our GL Approach
lagL| = 4.45(1 = T/T¢) BeL =11.23+35.2(1 — T/T.)

e So, again there is Good Agreement. However, our method only depends on simple
holographic expressions obtained by self-consistency: o ~ £72, 8 ~ (O3£)72

21



Our Bottom-Up Experience

o Our Minimal D=5 Model: Main Results so Far

e We have constructed holographically and self-consistently and effective GL action for the
boundary theory

e By computing a wide array of physical SC quantities (O3, ns, A, £), our simple model
predicts a behaviour in agreement with real-world SC phenomenology

e Our holographic computations are in agreement with non-trivial functional dependencies of
GL Theory: «, 8. These are encoded in simple, concise holographic expressions

e The GL Approach computation of the Free Energy is in agreement with the standard
holographic method, and in agreement with previous research

29



Studying Superconducting Magnetic Phenomena

o Finally, lets use our approach to study the magnetic phenomenology of our Holographic
Superconductor...

bl



Small Aside: Magnetic Phenomena in Superconductivity

e Meissner Effect: Expulsion of Magnetic fields from the volume of a SC
e However, increasing the magnitude of the field breaks the SC phase in two distinct manners
e This provides one of the main ways to classify a SC

B NP Type | B NP Type Il

B.(T)

SC

e Type I: Superconducting Phase— Normal Phase at B,
First order phase transition

e Type IlI: Superconducting Phase— Abrikosov Vortex Phase at B,y — Normal Phase at
BCQ
Second order phase transition

24



Holographic Superconductor: Type | or 11?7

e The Ginzburg-Landau Parameter <

e One of the great triumphs of Ginzburg-Landau Theory was to encode the Type |/Type Il
classification in a single parameter, known as the Ginzburg-Landau Parameter «

Quite succinctly, GL Theory tells us that a superconductor is:

e Type | if k < 1/v/2

e Type Il if k > 1/\/5

25



Holographic Superconductor: Type | or 11?7

e The Ginzburg-Landau Parameter <

e With the characteristic lengths, we can also holographically compute the Ginzburg-Landau

Parameter
A 1
£\ 8rig?

K=
‘ ‘ ‘ ‘ ‘ 50+
4 1 45
3t 9 40-
&
“af 1 354
i g=24 ] 304 (C)
25+
o 02 03 0z o5 0 2 4 6 8 10 12 14 16 18
T Temperature (K)

p3

e Very non-trivial. It follows perfectly the Summers Empirical Fitting for Nb3Sn

&(T) = £(0) (ao — bo(T/Te)?(1 — co log(T/Te)))

26



Holographic Superconductor: Type | or 11?7

e The Ginzburg-Landau Parameter . Type | or 11?

e For each value of ¢, k(T¢) is always finite value, which we take as the characteristic value
of k for the SC model at a given ¢

e We take this value and see how it evolves with the scalar charge q

o8l ]
0.6- -
o e ® oo ° ° ° ¢

K 0.4t .o g

L]
L]

02 o ,
0.0k ‘ ‘ ‘ ‘ ‘ g

0 5 10 15 20 25 30

q

e We see k approaches asymptotically x ~ 0.55

e Since this value is below 1/4/2 ~ 0.71 — the Superconductor must be Type |

27



External Magnetic Fields

e Droplet Solutions

e We apply a constant magnetic field following the magnetic-brane solution by [D’Hoker,
Krauss. JHEP 1003 (2010)]. Used for the first time done in HSC
e We add a Magnetic Component to the gauge field ansatz

B
A=d(r)dt + 5 (—ydz + zdy) Frylrsoo = B

e Take D'Hoker-Kraus background as fixed and add scalar field
e The scalar field equation results to be separable

W(r,u) = (r)U(u)

1
—R
V2

where u is the radial polar coordinate in the (z,y) plane
e U-equation has the following solution

U(u) = exp (—%u)

Thus, we have Superconducting Droplet Solutions
e The R-equation develops an effective mass:

9 q2q>2

mfﬁ:m — +2dei2V

The & contribution lowers the effective mass, making the system unstable. However, the
magnetic field reverts the scalar field instability
— Returns us to normal phase at a critical magnetic field B,

28



External Magnetic Fields

e Critical Magnetic Field

e We solve the R-equation for the value B, that returns us to the normal phase

0.25F
0.20-
BE)K 0.15-
2B

P77 0.100

oosf =1

0.00: . . . . .
0.000 0.001 0.002 0.003 0.004 0.005

e The model predicts a near-T,. behaviour of B, as
Be~(1-T/T)

in accordance to the critical fields measured in real superconductors

20



External Magnetic Fields

e Magnetic Comparison

e According to GL Theory, the critical magnetic field is given by

(@
B = Vir laf _ T Y
f qCoTe &

e We can compare the B, calculated through the D'Hoker-Kraus solution (B2X) with the B,
computed by our GL Approach (BSl) by computing the ratio BS-/BPX, evaluated at

T="T:
1z ] 3.00 1
1.0 1 o5l ]
GL
BLM 0.8 Bgt 20 . ) ]
0.6 —_— .
Y BODK 1.5F ‘... . ]
0.4 ] . e . . -
1.0f 7
0.2 1
0.0 h . ) . 0.5¢ 1
022 024 026 028 030 032 034 0.0L ) ) ) ) ) 3
T 0 5 10 15 20 25 30

p1/3 q

20



Our Bottom-Up Experience

e Our Minimal D=5 Model: Main Magnetic Results

e We have holographically computed the Ginzburg-Landau parameter x and concluded that
our HSC is Type |

e Furthermore, the GL parameter k as a function of temperature closely resembles the
behaviour of a real world high-T. superconductor

e We have computed the critical magnetic field using the D=5 D’Hoker-Kraus solution for
the first time in the context of HSC and saw that it is consistent with GL computation

21



A Different Model

e Looking for Changes

e So, having constructed our Ginzburg-Landau effective description, it is only natural to look
at how it can be altered by considering different bulk models. Let us then consider a
different kind of background...

29



Introducing Lifshitz Scaling to Holographic Superconductivity

o [Dector. Nucl.Phys. B898 (2015)]

e Enter Lifshitz Background
[Kachru, Liu, Mulligan. Phys.Rev.D 78 (2008)], [Taylor. ITFA 48 (2008)]

e Motivation: The phase transition of some condensed matter systems are governed by
Lifshitz-like Fixed Points, which exhibit anisotropic scaling
t— A\t T — A\x

z = Lifshitz Dynamical Critical Exponent
e This anisotropy breaks Lorentz invariance — Systems are Non-Relativistic
e There is a gravitational dual to Lifshitz fixed point systems, given by the background

ds® = —7"22f(7")dt2 Qf( +r? Z dw

z+3
f(u) - ’V‘z+3
3
T = (z+ )rﬁ
47

e In the isotropic case z = 1 we recover Schwarzschild AdS BH.
e Our Question: How does the anisotropy alters the Holographic SC phenomenology?

22



Minimal D=5 Holographic Superconductor with Lifshitz Scaling

e The Bulk Model
e We propose the same D=5 bulk-model
1
5= /dsx/i—g (_1F2 — |0V — iAV[? — m? |qf|2)

under the Fixed Lifshitz Background.
o We use the same Bulk-Fields Ansatz

U(r) = $(r)/V2 A= (r)dt
e The scalar and gauge fields have asymptotics
o 04 P
~y . P ~ o —
P (r — 00) S v + (r—o0)=p e

Ay = % ((z+3):l:\/(z+3)2+4m2)

2
m2> _ (z+3)
- 4
e We will consider the integer values z = 1, 2 to see how the SC phenomenology deviates from
the isotropic case z =1.

and the BF bound is now

24



Studying Different Condensates

e Different Cases of Condensation

e To have a fuller phenomenological picture, we will study two cases of condensation
e Case I: Take mass

m? = -3z

So

ql(r—)oo)%;-f-rfg'i‘"'

and set O, = 0, so that the SC order parameter is O3 of dimension 3
e Case Il: Take mass
m? = —(z+42)
So

O, O

Y(r — 00) & o

and set 0,492 = 0, so that the SC order parameter is O of dimension 1

25



Studying Different Condensates

e Condensates and Critical Temperature

15
O 10
P
0.5
0.0
T T
P13 P23
25 : : : : : ‘
15 1 a0 1
O 10 lo, 15 ]
1/3 T/3
P P77 100 ]
0.5¢
Case Il 0.5t Case Il ]
z=1 z2=2
0.0 ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘ ‘
0.2 0.3 04 05 010 015 020 025 030 035
T T

p1/3 p2/3 .



Studying Different Condensates

e Condensates and Critical Temperature

e The model predicts a near-T,. behavior as
Op ~ (1 =T/)T:)/?

as real-world superconductors for all condensates and for all z

e However, we also observe that T, changes with z:

TC/,DZ/3 z=1 z=2

Case | 0.198  0.087
Case Il 0.517 0.351

e Thus, we conclude that anisotropy lowers the critical temperature

7



Gauge Fluctuation and Penetration Length

o If we add the Gauge Fluctuation
A= ®(r)dt + e TRV A (1)

then we obtain holographically SC number density n

J. J.
Az(r—>oo)zA§CO)+7z+--~ = ng=-——
ritz 400
xT
e We can then compute the Penetration Length A\ = 1/\/4nn,
10 10, ; . ‘ ‘
8 8r
6 6r
113
per 03 o 03
4 z=1 z=2
of Case | of Case |
0 ‘ : : : 0 : : : :
0.05 0.10 0.15 0.20 0.02 0.04 0.06 0.08
T
pi3 23

e Near-T,. we find the behaviour

A~ (1= T/T.)" /2
in accordance to real-world superconductors, for all condensates and all values of z

28



Scalar Fluctuation and Coherence Length

e If we add the Scalar Fluctuation
W(ryy) = ($(r) +Mon(r)) /V2

then we obtain the wave number k for the eigenvalue equation £{n} = k27. Then, from
1
Ok)O(=k)) ~ 7 — =1/|k
(ORI ~ 7 7 6l =1/ 14

e We can then compute the Coherence Length £

W ; ; ; ;
12F
10F
1/3 8r
P60 of O3
z=1
4 Case |
of
0 : ; . . o . , . . . .
0.15 0.16 0.17 0.18 0.19 0.055 0.06C 0.065 0.07C 0.075 0.080 0.085
T
ol3 e

e Near-T,. we find the behaviour
£~ (1 -T/T) 2

in accordance to real-world superconductors, for all condensates and all values of z

20



Ginzburg-Landau Approach with Lifshitz Scaling

e Ginzburg-Landau Effective Boundary Action

e Following the previous exposition, we now construct an effective GL action for the boundary
theory

e Again, to determine the GL order parameter |V | parameter we propose
2
[TeL|? = N.O%

and using the numerical equality
OX

Ns =1,

=C,
we obtain
1
s
Thus, the GL order parameter can again be holographically determined.
o We compute the GL coefficients as in the previous exposition. The result is

1
4N £20%

N

laf = B=

1
4
e Both coefficients retain the standard near-T. behaviour for all condensates and values of z.

a~oa(l—T/T:) B = Bo+p1(1—T/Tc)
e However, we also observe that their magnitude decreases for larger values of z

a0



Determining Ginzburg-Land

with Lifshitz Scaling

e Ginzburg-Landau Coefficients

0.35

0.005 : : ‘ :
015 0.004f 1
1 g4 {Jo 0.003 ]
1/3 s
P 13
Case | P 0.002 Case | 1
0.05} ]
Os 0.001} Os 1
z=1 z=2
0.00L2 ‘ ‘ , 0.00 ‘ ‘ ‘
0.35 0.40 0.45 0.50 0.20 0.25 0.30
T T
p1/3 pz/z
0.10f ‘ ‘ 7 0.008F : : : : -
0.08 0.006 ]
.. 0.08
P2 p B 0.004 ]
0.04 Case |
0.02 0.002+ 05
z=2
0.00 s ‘ s . 0.000 s ‘ s s
0.35 0.40 0.45 0.50 010 015 020 025 030
T T
p1/3 p2/3

a1



Holographic Superfluid Interpretation

e Holographic Superfluidity Point of View

o If we consider the case where we keep the U(1) symmetry in the boundary field theory as
ungauged, that is, global = We can take our system as a model for an Holographic

Superfluid
e Our bulk gauge field perturbation A, has the holographic superfluid interpretation
Jz
Az (r — 00) ®vg + i 4
v : Superfluid Velocity Jz : Supercurrent

e Particularly, we can compute the Critical Supercurrent J.: The value of the supercurrent at
which the superfluid system passes to the normal phase

e According to GL theory, the supercurrent is given by

3/2 3/2 2
=l () VR= g (5)

3 20, \3 ¢

a9



Holographic Superfluid Interpretation

e The Critical Supercurrents

e Our computation of the critical current give

0.8
1.5
0.6
J 10 1%
P p 04
O
0.5 3
z=1 0.2
Case |
0.0l ‘ ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘
008 010 012 014 016 0.18 020 0.35 0.40 0.45 0.50
T T
p1/3 p1/3

e We find that the predicted near-T. behaviour of J. is
Je~ (1= T/T.)3/?

which is in agreement with measured J. in real-world superfluids for all condensates and all
values of z
However, the magnitude is diminished by anisotropy
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Ginzburg-Landau Parameter and Lifshitz Scaling

e Finally, we can compute the GL Parameter x = \/& for different values of z

0.20 ‘ ‘ ‘ ‘ ‘
0.00€F ‘ ‘ ‘ 7
0.15 1 0.00% 1
0.004- 1
x 0.10" 1 £ ]
Case | K O.OOVN
O3 000z O3 E
005 > =1 ] z=2
0.001f 1
0.00 : : : : : 0.00C : : : i
030 035 040 045 050 0.20 0.25 0.30 0.35
T
p1/3 p2/3

e Taking the value of k at the critical temperature T, we find

K z=1 z=2

Case | 0.527  0.467
Case Il  0.070 0.002

e All values of » are lower than 1/4/2 ~ 0.71 for all z => Our System is a Type | SC
e x is always lower for higher values of z

a4



Magnetic Phenomena and Lifshitz Scaling

e Vortex Lattice Solutions

e To study the system under the presence of a magnetic field, we follow [Maeda, Natsuume,
Okamura. Phys.Rev.D 81 (2010)]

e We find that the most general scalar field solution is separable as

2

B ) 95 (v, 7)

‘11(1)(7"7 Z) = p(r) exp (— 5

where 3 is the Elliptical Theta Function which has pseudo-periodicity and

periodically-located zeros in the (x-y) plane

e Thus, the T(1) solution has a lattice vortex profile in the (x-y) plane

45



Magnetic Phenomena and Lifshitz Scaling

e The Critical Magnetic Field

e Meanwhile, from the radial part of the solution p(r) we compute the critical magnetic field

B.

1.

0.8
B, 06
02 4l

Case |
0.2 O3
z=1
00 ‘ ‘ ‘ :
0.35 0.40 0.45 0.50
T T

e Our model predicts the near-T. behaviour for all z and condensates is
B.~ (1-T/T¢)

in agreement with measured B,
However, the magnitude is diminished for higher anisotropy
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Our Bottom-Up Experience with Lifshitz Scaling

e Minimal D=5 Model Adding Lifshitz Scaling: Main Results

e We have shown that the effective GL action for the boundary theory can be constructed in
the presence of a Lifshitz background

e We observe that the critical temperature is lowered by anisotropy

e We observe that near-T. functional dependency on T' of physical quantities is robust and is
not affected by anisotropy

e However, the magnitude of physical quantities (o, 3, Je, k, Bc) is diminished by higher
anisotropy

e The Ginzburg-Landau parameter « is lower than 1/\/5 for all condensates and values of z,
so the system is always Type |

e We computed the critical magnetic field and found solutions with a vortex lattice profile
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Conclusion

e Final Analysis

o | have presented you with a good overview of the more phenomenological approach to
holographic superconductivity

e Using simple models, we constructed holographically a Ginzburg-Landau effective action for
the boundary theory

e In particular, we have computed the Ginzburg-Landau parameter x and shown that the
system is Type |

e We have also computed the value of the critical magnetic field on different setups

e We have seen that holographic computations can reproduce with quite some detail the
specific phenomenology of superconducting systems
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Conclusion

Muchas Gracias!

40



Additional Material.

Additional Slides

50



Superconductivity in Just One Slide

e We Need to Talk About SC
e Discovered in 1911 by K. Onnes

o Defined by Loss of Resistivity+ Perfect Diamagnetism below a certain Critical
Temperature T,

e First description given by the London Theory (1935).
Very Phenomenological.
Based on ns (taken as constant). Gives the London Equations.
However: Does not hold in strong magnetic fields.
o Next came Ginzburg-Landau Theory (1950).
Based on non-homogeneous |¥¢ (Z)].
Accounts for SC 4+ magnetic phenomenology.
However: Only valid near-T,. and is only an effective description.
e Finally: BCS Theory (1957).
Based on Ay ~ (c_i ckt) and Cooper Pairing mediated by Phonon Interaction.
Very successful microscopic theory of most superconducting materials.

e ....And then: High Temperature Superconductivity.
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High-Temperature Superconductors: Some Basic Data

e General Properties

Discovered first by Bednorz and Miiller in 1986. (Instant Nobel Prize!)

A material is considered a High-Temperature Superconductor is his critical temperature is
Te ~ 30K or higher. A typical High-T. superconductor has actually T, ~ 90K.

By a High-Temperature Superconductors, we will be referring to cuprate superconductors.
Cuprates are ferromagnetic ceramics that after slight doping present high-T,
superconducting behaviour on cooling.

The cuprates are structurally composed of 2-dimensional CuO2 layers, and superconductivity
occurs in these copper-oxide layers.

They have an order parameter with d-wave symmetry

Ay ~ cos kg — cosky .
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Spin-Fermion Model. Advantages and Limitations

e Advantages of the SF Model

the Spin Fermion Model captures a lot of cuprate phenomenology
e Superconducting instability.
e d-wave order parameter Ay ~ cos kz — cos ky.

e NFL liquid behaviour from one loop corrections in the self energy.

e Limitations of the SF Model

However, it also has the following Very Serious Limitations

e It has a strong coupling: )\ ~ 2, while for usual Superconductors A ~ 0.3.
This makes it hard to get information out of the theory, because of limited use of
perturbative techniques

e There is a quasi-particle picture breakdown at the hot-spots of the Fermi Surface of the
cuprates (!!1).
This forbids us to use QFT techniques at all at some points.

52



The Superconductor Characteristic Lengths

e The Superconductor Characteristic Lengths: Definitions

e In order to compute « and 3, we first calculate holographically the Superconductor
Characteristic Lengths: ) and &.
e Penetration Length \. External magnetic field have exponential decay inside
superconductor, following
1
2 = —
VB = 2 B
o Coherence Length £. Measure of spatial decay of small perturbations of |¥g | from
Minimum Value |V |, which is the value of the order parameter deep-inside the SC

Yol = [Yoo| +n(x)

n(z) ~ exp(— |z| /€)
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The AdS/CFT Dictionary

e AdS/CFT: Minimal Elements

Large-N Strongly Coupled Classical Anti-deSitter
Quantum Gauge Field Theory <+— Gravitational Theory
in d Dimensions in d+1 Dimensions
(Boundary Theory) (Bulk Theory)

e AdS/CFT+SC: Motivation
e The Dictionary

e The AdS/CFT Correspondence establishes a very clear Dictionary, between bulk and
boundary physical quantities and phenomena.

e The “Translator’: The Master Equation.
Given a bulk field ¢ with value at the boundary ¢g

e Tertloo] = Zgiing 0]

e With
Zstring[¢0] = / D(ﬁ eiSS”’i"E ~ eiSCIassical Gravity
%0

e~ Lcrrldo] — <exp—/¢o(’)>
CFT
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Bulk-Dimension and Magnetic Phenomenology

e Back to Our Choice of Bulk-Dimension.

e We choose bulk-dimensions d=4+1 — boundary-dimension d=3+1. Why this choice?

o It is usually believed that boundary-dimension d=2+41 HSC must be Type Il. Why is this
believed?

e “The Scaling Argument”: First, consider a dual field theory on d=2+1 (SC on a plane).
Then, apply a 3-dimensional magnetic field. Then, the free energy needed to expel magnetic
field scales as Volume, while the energy the system gains from being SC scales as Area.
Therefore, magnetic fields are never completely expelled (B.1 = 0) and the system is Type
1.

e However, if both magnetic field and SC have the same spatial dimension 3, then there is a
direct thermodynamical competition that can make the SC Type |. And that is why.

e There is now evidence that a boundary dimension d=2+41 Holographic Superconductor can
indeed be Type I.
[Dias, Horowitz, Igbal, Santos. JHEP 1404 (2014)]
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Different Phases: Normal Phase

e The Normal Phase

e The EOM of the system admit a trivial solution for the scalar
Y(r)=0

which corresponds to a Null Order Parameter in the dual QFT, i.e. Normal Phase

e In this phase, for the metric and gauge field solution is exact and given by AdS
Reissner-Nordstrém BH

> 3r8 + p? p?

gr) =r 37"%7“2 34
x(r) =0
1 1
P(r) = — — —
(r=p (T’21 r2>
e The Hawking-Temperature is

67“2 — p?
T=—"2——

5
6mry
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Near-Horizon Instability

e The Superconducting Instability

e Summary: The near-horizon region of the normal AdS-RN-BH at 7' = 0 has a AdS2 x R3
form. A small scalar field has an effective mass mgﬁ = m? — 2¢?2, so the charge can drive the
mass below the AdS> BF bound, making the near-horizon unstable and leading to hairy BH
solutions. Hairy solution translates to U(1) symmetry breaking and condensation in the dual
QFT's order parameter.

e In the T = 0 limit, changing to near-horizon coordinate # = r — 1 (r, = 1), the RN-BH
metric is AdS2 x R3 (with a different radius)

1
2 o _qoR2p2 4 L =2 o2
ds* ~ —127“dt” + 12F2dr + d3
e The scalar field equation in this limit is

2 2¢% — m?2 m?2 — 2¢2
" 2o -0 2
P+ F’IZJ + 272 P MErE D
e So, there is a near-horizon instability if the mass is below the AdSs BF bound
m? —2¢%> < -3

e Thus, in the window
—4<m?<2®-3
one has asymptotic AdS;; geometry and an instability in the near-horizon AdS>
e Instability will lead to Scalar Hair Solutions
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AdS/CFT and Superconductivity

e The Basic Phenomenological Elements of a ORDINARY Superconductor

Any very minimal SC theory must have the following properties:

e The theory will posses the usual electromagnetic gauge invariance — U(1) local symmetry.
e The spontaneous breaking of this U(1) symmetry leads to a SC phase.

e The symmetry breaking is provoked by the condensation of a Charged SC Order Parameter
This elements suffice to have Infinite Conductivity
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AdS/CFT and Superconductivity

e The Basic Phenomenological Elements of a HOLOGRAPHIC Superconductor

U(1) local symmetry

-The breaking of this U(1) in the bulk leads to a SC phase in the boundary

-Local U(1) theory in the bulk is dual to a global U(1) theory in the boundary. We will
always assume that the global U(1) theory can be promoted to local by gauging of the the
dual theory

Massive Charged Bulk Scalar Field ¥

-This will translate to a SC Order Parameter in the dual theory (Note: s-wave)

-Effective holographic description of dual multi-fermion bound state

-The AdS441 bulk theory is stable if scalar mass is above BF Bound

d2
m? > s ( m?>—4 for the d=4 case )

U(1) Gauge Field A,

-Required by U(1) Symmetry

-Introduces Charge Density in Boundary Theory

Gravity

-Einstein-Hilbert-Maxwell. This will give gauge solutions with charge density
-Negative Cosmological Constant: This will give Vacuum AdS Solutions
-Black Hole Solution: This will give Temperature in dual QFT
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Determining Ginzburg-Landau: The GL Order Parameter

o The Ginzburg-Landau Order Parameter |¥g |

e GL theory predicts
WLl ~ (1= T/Te)"/?
which has the same critical exponent as O3. We match exponents and simply propose

2
[WoL|* = NgOF
e To determine N; we use the following Numerical Equality
02
=2 = CoTc(q)
Ns =T,
16~ ; . . !
14} 1
1 q032 12 y
p* s g0 ]
g=4
8, 4
- 6 1 1 1 1 1
0 s © B’ B = 0 0.05 0.10 0.15 0.20 0.25
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Determining Ginzburg-Landau: The GL Order Parameter

e Then, if we use the Ginzburg-Landau Relation
|\I}GL|2 =nNs

we can finally obtain
1

T qCoTec(q)
e Thus, the GL order parameter is holographically identified.
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Determining Ginzburg-Landau: The Ginzburg-Landau Coefficients

e The Ginzburg-Landau Coefficients o and 3

Having computed the characteristic lengths, we now can compute the GL Coefficients
e The « coefficient is computed directly from GL Theory

ol =
al = —
4£2
e To compute 3, we use the GL Relation
o
oot = 4]

where || is the value of condensate deep-inside the SC, where external fields and
gradients are negligible.

e Since we are working with small field perturbations, we consider ourselves in that
approximation. Then |¥g | =~ |V | and

8= ‘O‘| _ ‘O‘| :qCOTc 1
[TUool?  NgO2 4 02
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External Magnetic Fields

e Constant Magnetic Field

e We apply a constant magnetic field following the magnetic-brane solution by
[D’Hoker, Krauss. JHEP 1003 (2010)]. First time done in HSC.

e In a Nutshell: We start with Einstein-Hilbert-Maxwell
12 1

S:/d%\/fg(RJrE - 7F2>

4
e We add a Magnetic Component to the gauge field ansatz

B
A=d(r)dt + 5 (—ydz + zdy) Frylr—soo = B

d 2
ds? = —g(r)dt® + % +e2V () (dw2 —+ dy2) +e2W(gz2
g(r
and solve in a perturbative manner around B = 0
9(r) = go(r) + B%g2(r) + -+ O(r) = o(r) + B ®a(r) + - -

V(r) = Vo(r) + B>Va(r) + - W (r) = Wo(r) + B2Wa(r) + - --
which is a reliable expansion if B < T2
e The Hawking Temperature is

6 2 2,.2
T:241‘h—4p - Brj
24773
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Gauge Fluctuation: Numerical Equality

e Confirming the Numerical Equality

e Having computed ng, we can also confirm the numerical equality

0%

Ns

T=T,

C:

where C, depends only of z for each case of condensation considered

1 032

p4/3 ﬁs

14t
12

o N b O ©

[ Case |

tz=1

10,

1 Ns

0.05 0.10

1/3

0.15

— 03

0.6,
0.5

0.4

0.2

0.1r

0.0

Case Il
z=1

0.30 0.35

0.40

T

P

1/3

0.45

0.50
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Magnetic Phenomena and Lifshitz Scaling

o Magnetic Fields: A Series Expansion

e We follow [Maeda, Natsuume, Okamura. Phys.Rev.D 81 (2010)] and propose a series
expansion for the bulk fields

U(E,r) = 2UM(F ) + 20D (7 r) + -

Au(@r) = AP @ )+ e AP @) + -

with
_B.—-B <1
€= ——— €
B.
e The Gauge Solution: At zero-order we have solutions
0) _ P 0
A,E):@(r)zﬂfr?)_z A9 — By

e The Scalar Solution: The scalar field at first-order has a most general, separable solution

2

D (r, ) = p(r) exp (—BZ ) 93(v, T)

where ¥3 is the Eliptical Theta Function which has pseudo-periodicity and
periodically-located zeros in the (x-y) plane

e Thus, the ¥(1) solution has a lattice profile in the (x-y) plane.
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