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Outline of this Talk

The main objective of this talk is show how string theory, through the AdS/CFT
correspondence, can be applied to the study of high-temperature superconductivity

• A Motivation: High-Temperature Superconductivity and its problems

• How does AdS/CFT can help us understand high-temperature superconductivity =
Holographic Superconductivity

• Ginzburg-Landau Approach to Holographic Superconductivity

• Holographic Superconductivity with Lifshitz Scaling
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Motivation: High-Temperature Superconductors

• Also known as Cuprates: Anti-Ferromagnetic ceramics that become SC after doping
• High-Tc Superconductors have a very rich, almost universal phase diagram

• Superconducting Phase: The Dome

• Tc ∼ 90K. Usual SC has Tc ≤ 30K

• d-Wave Order Parameter:

∆k ∼ cos kx − cos ky

• Normal Phase: Strange Metal

• Meaning Non-Fermi Liquid behaviour:

• Linear inverse quasi-particle lifetime:

1

τ
∼ ω

• Linear Resistivity:

ρ ∼ T

T

p
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Cuprates: A Hidden Quantum Critical Point

• Conjecture: There is a “hidden” Quantum Critical Point (QCP) inside the superconducting
dome, that would induce strong quantum fluctuations leading to a NFL behavior. This is the
starting point of many QFT models of the cuprates
• A strong candidate for such a model is the Spin-Fermion Model.
-[Abanov, Chubukov, Schmalian. Adv.Phys. 52], [Melitsky, Sachdev. Phys.Rev.B 82]
-It proposes electron pairing mediated by Spin Density Wave Sk.
-It makes very successful predictions: SC Instability, d-wave order parameter, NFL liquid
behaviour from one loop corrections in the self energy

It has serious limitations:

• It has a strong coupling: λ ∼ 2, while for
usual Superconductors λ ∼ 0.3

• There is a quasi-particle picture
breakdown at the hot-spots of the Fermi
Surface of the cuprates

T

pQCP
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FLSC
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High-Tc Superconductors: Thinking Outside of the Box

• Standard QFT approaches result in strongly coupled theories, with sometimes a breakdown
of basic interacting many-body theoretical assumptions

• We need to look for a different approach to the problem

• We can try to apply the AdS/CFT correspondence using the following motivation...
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Enter the AdS/CFT Correspondence

• AdS/CFT Correspondence: Rough Statement

Large-N Strongly Coupled Classical Anti-deSitter
Quantum SU(N) Gauge Field Theory ←→ Gravitational Theory

in d Dimensions in d+1 Dimensions
(BOUNDARY THEORY) (BULK THEORY)

• What part can it play in SC: Motivation

• Using the correspondence, we can look for the superconducting phase of these particular
strongly-coupled QFT’s by studying the equivalent, tractable classical dynamics of the
dual gravitational system

• Then, look for universal phenomena shared by real-world cuprates
That is: look for both theories to belong to the same universality class
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AdS/CFT: The Dictionary. Essential Vocabulary

• The Dictionary: Scalar Fields

• AdSd+1 Spacetime in the bulk

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 +

r2

L2
d~x2

• The r-coordinate is the Radial Dimension

r = 0 (AdS “Horizon”) r =∞ (AdS Boundary)

• Massive Bulk Scalar Field Ψ(r, xµ).

Ψ(r →∞, xµ) ≈ ψ0

r∆−

+
O
r∆+

+ · · ·

∆(∆− d) = L2m2

• Translation (The Master Equation):

e−ΓCFT[ψ0] =

〈

exp−
∫

ψ0O
〉

CFT

= e−SClassical Gravity[Ψ]

ψ0 : Source O : VEV, Dimension ∆+
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AdS/CFT: The Dictionary. Essential Vocabulary

• The Dictionary: Gauge Fields

• AdSd+1 Spacetime in the bulk

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 +

r2

L2
d~x2

• The r-coordinate is the Radial Dimension.

r = 0 (AdS “Horizon”) r =∞ (AdS Boundary)

• Bulk Gauge Field Aα(r, xµ).

Aα(r →∞, xµ) ≈ Sα +
Jα
rd−2

+ · · ·

A = Aα(r, x
µ)dXα

• Translation (The Master Equation):

〈

exp−
∫

SαJ α
〉

CFT

= e−SClassical Gravitiy[A]

Sα : Source Jα : VEV
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Holographic Superconductor: A D=4+1 Basic Realization

Inspired on [Hartnoll, Herzog, Horowitz. JHEP 0812 (2008)] in D=3+1
The following is based on [Dector. JHEP 1412 (2015)] in D=4+1

• Basic Bulk Model in D=4+1

SBulk =

∫

d5x
√
g

{

R− 1

4
F 2 +

12

L2
− |∂Ψ− iqA|2 −m2 |Ψ|2

}

• Basic Ansatz

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2d~x2d−1

A = Φ(r)dt , Ψ = ψ(r)/
√
2

• Scalar field Ψ(r) is dual to s-wave SC order parameter. Mass above BF Bound m2 ≥ −4
• We will look for asymptotically AdS5 BH solutions that introduce Temperature

• Φ(r →∞) ≈ µ− ρ/r2 + · · · . Following the AdS/CFT dictionary, ρ is charge density, µ
chemical potential. We always work in the canonical ensemble, ρ fixed to unity

• Action has U(1) local symmetry → U(1) global symmetry in boundary theory. We assume
we can gauge it and have a SC interpretation

• We will work with full back-reacted solutions and using the shooting method

• Normal Phase: Ψ(r) = 0, Exact AdS-RN-BH solution
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Different Phases: Superconducting Phase

• The Superconducting Instability

• There can be an scalar field instability in the near-horizon region of the normal solution,
ridden by the scalar charge q and leading to scalar hairy BH solutions. Finding these hairy
solutions translates to U(1) symmetry breaking and condensation in the dual QFT

• Set scalar mass m2 = −3
• Scalar charge q is input parameter

and consider different values of q to
probe phenomenology

• The EOMs give the asymptotics

ψ(r →∞) ≈ C1

r
+
O3

r3
+ · · ·

• Solve using boundary condition
C1 = 0, meaning Unsourced
Spontaneous Condensation

• SC Order Parameter is O3

Model predicts near-Tc behavior

O3 ∼ (1− T/Tc)1/2

as real-world superconductors
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Bulk Field Perturbations

• Field Perturbations: Gauge Field Aµ
• We consider a small perturbation to the gauge field

A = Φ(r)dt+ e−iωt+ikyAx(r)dx

• The Ax EOM gives the asymptotics

Ax(r →∞) ≈ A(0)
x +

Jx

r2
+ · · ·

A
(0)
x : Dual Vector Potential

Jx: Its Conjugated Current

• We can relate these trough the
London Equation

Jx = −q2nsA(0)
x

ns : SC Number Density

• Define for simplicity

ñs ≡ q2ns = −Jx/A(0)
x

• Physical near-Tc behaviour

ns ∼ (1− T/Tc)
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Bulk Field Perturbations

• Field Perturbations: Scalar Field ψ

• Likewise, we consider a small harmonic perturbation to the scalar field

Ψ(r, y) =
1√
2

(

ψ(r) + eikyη(r)
)

• The η EOM can be written as an
eigenvalue equation

L{η} = k2η

• We solve for Permitted
Eigenvalues of Wave Number k
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The Bottom-Up Approach to Holographic Superconductivity

• Taking a Step Back: What are we doing?

• We are following the Bottom-Up Approach to Holographic Superconductivity

• Very Phenomenological. Start from simple, hand-made bulk models.

• One has a broad input parameter space: m2, q, Potential Terms, etc.

• One can realize tractable computations and probe the superconducting phenomenology of
the dual QFT theory

• However, from the context of the AdS/CFT correspondence:

• One cannot “track up” the bulk model back to full Type IIB String Theory origin

• We do not know the details of the dual QFT and the particular condensing operators

To have some basic knowledge of the dual field theory, we can always follow the same intuition
developed by Ginzburg and Landau...
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Enter Ginzburg-Landau Approach

• Ginzburg-Landau Effective Boundary Action

• We propose that our boundary theory can be described effectively near the critical
temperature by

SBoundary
eff ≈

∫

d4x

{

α |ΨGL|2 +
β

2
|ΨGL|4 +

1

2
|∂ΨGL − iqAΨGL|2 + · · ·

}

• Microscopic DOF’s are hidden in GL order parameter |ΨGL|
• This is the original phenomenological intuition followed by GL to explain SC, without

knowing the microscopic details of electron pairing

• Constructing the GL Boundary Action

To construct the GL boundary action in a self-consistent manner, we must then:

• Identify holographically the GL order parameter |ΨGL|
• Compute holographically the GL coefficients α, β

• Check with standard GL Theory predictions
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Determining Ginzburg-Landau: The GL Order Parameter

• The Ginzburg-Landau Order Parameter |ΨGL|

• Since GL theory predicts
|ΨGL| ∼ (1− T/Tc)1/2

which has the same critical exponent as O3. We match exponents and simply propose

|ΨGL|2 = NqO2
3

where we can compute holographically the proportionality constant Nq , given by

Nq =
1

q C0Tc(q)

• Thus, the GL order parameter is holographically identified.
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Determining Ginzburg-Landau: The Characteristic Lengths

• The Penetration Length λ

• Measure exponential decay of magnetic fields inside superconductor
• It can be holographically computed directly from ñs. According to GL Theory

λ =
1√
4πñs
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• Model predicts a near-Tc behaviour

λ ∼ 1

(1− T/Tc)1/2
as measured in Real-World Superconductors
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Determining Ginzburg-Landau: The Characteristic Lengths

• The Coherence Length ξ

• Measure of exponential decay of perturbations of the order parameter
• It can be holographically computed directly from the wave number k. Indeed, the coherence

length ξ is the inverse of the pole of the correlation function written in Fourier Space

〈O(k)O(−k)〉 ∼ 1

k2 + 1/ξ2
→ |ξ| = 1/ |k|
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• Model predicts a near-Tc behaviour as Real-World Superconductors
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Determining Ginzburg-Landau: The Ginzburg-Landau Coefficients

• The Ginzburg-Landau Coefficients α and β

• Having computed the characteristic lengths, we now can compute the GL Coefficients.
The α and β coefficients are then given ultimately by the concise expressions

|α| = 1

4ξ2
β =

q C0Tc

4

1

ξ2O2
3
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• They have the near-Tc behaviour required by GL

|α| ∼ α1(1− T/Tc) β ∼ β0 + β1(1− T/Tc)

In particular, the β functional relation is quite non-trivial, coming from β ∼ (O3ξ)−2
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Consistency of our Ginzburg-Landau Approach

• So, having determined holographically the effective GL boundary action, let’s look for some
ways to check its consistency...
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Some Checks: The Free Energy

• The Helmholtz Free Energy

• We can calculate the Helmholtz FE difference ∆f = fsc − fn. By standard holographic
methods we must calculate the on-shell value of the regulated gravitational action at the
boundary. Part of the usual holographic toolkit

• On the other hand, according to GL theory, we approximate this Helmholtz FE as

∆fGL ∼ α |ΨGL|2 +
β

2
|ΨGL|4 = − 1

8 q C0Tc

O2
3

ξ2
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Some Checks: The Free Energy

• The Helmholtz Free Energy: A Comparison

• We can compare the ratio of both results, and find Excellent Agreement
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• We can further also with [Herzog, Kovtun, Son. Phys.Rev.D 79 (2009)]
• In a Nutshell: Computed FE −→ Fitted to a GL form −→ Found numerically α and β
• Using their method, one finds (q = 4)

|α| = 4.41(1− T/Tc) β = 10.95 + 36.75(1− T/Tc)
• Whereas, in our GL Approach

|αGL| = 4.45(1− T/Tc) βGL = 11.23 + 35.2(1− T/Tc)
• So, again there is Good Agreement. However, our method only depends on simple

holographic expressions obtained by self-consistency: α ∼ ξ−2, β ∼ (O3ξ)−2
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Our Bottom-Up Experience

• Our Minimal D=5 Model: Main Results so Far

• We have constructed holographically and self-consistently and effective GL action for the
boundary theory

• By computing a wide array of physical SC quantities (O3, ns, λ, ξ), our simple model
predicts a behaviour in agreement with real-world SC phenomenology

• Our holographic computations are in agreement with non-trivial functional dependencies of
GL Theory: α, β. These are encoded in simple, concise holographic expressions

• The GL Approach computation of the Free Energy is in agreement with the standard
holographic method, and in agreement with previous research
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Studying Superconducting Magnetic Phenomena

• Finally, lets use our approach to study the magnetic phenomenology of our Holographic
Superconductor...
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Small Aside: Magnetic Phenomena in Superconductivity

• Meissner Effect: Expulsion of Magnetic fields from the volume of a SC

• However, increasing the magnitude of the field breaks the SC phase in two distinct manners

• This provides one of the main ways to classify a SC

B Type I

T

Bc(T )

SC

NP B

T

VP

Bc1(T )

Bc2(T )

Type II

SC

NP

• Type I: Superconducting Phase−→ Normal Phase at Bc
First order phase transition

• Type II: Superconducting Phase−→ Abrikosov Vortex Phase at Bc1 −→ Normal Phase at
Bc2
Second order phase transition
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Holographic Superconductor: Type I or II?

• The Ginzburg-Landau Parameter κ

• One of the great triumphs of Ginzburg-Landau Theory was to encode the Type I/Type II
classification in a single parameter, known as the Ginzburg-Landau Parameter κ

Quite succinctly, GL Theory tells us that a superconductor is:

• Type I if κ < 1/
√
2

• Type II if κ > 1/
√
2
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Holographic Superconductor: Type I or II?

• The Ginzburg-Landau Parameter κ

• With the characteristic lengths, we can also holographically compute the Ginzburg-Landau
Parameter κ

κ ≡ λ

ξ
=

√

1

8πñsξ2
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• Very non-trivial. It follows perfectly the Summers Empirical Fitting for Nb3Sn

κ(T ) = κ(0)
(

a0 − b0(T/Tc)2(1− c0 log(T/Tc))
)
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Holographic Superconductor: Type I or II?

• The Ginzburg-Landau Parameter κ. Type I or II?

• For each value of q, κ(Tc) is always finite value, which we take as the characteristic value
of κ for the SC model at a given q

• We take this value and see how it evolves with the scalar charge q

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

q

Κ

• We see κ approaches asymptotically κ ∼ 0.55

• Since this value is below 1/
√
2 ∼ 0.71 −→ the Superconductor must be Type I
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External Magnetic Fields

• Droplet Solutions

• We apply a constant magnetic field following the magnetic-brane solution by [D’Hoker,
Krauss. JHEP 1003 (2010)]. Used for the first time done in HSC

• We add a Magnetic Component to the gauge field ansatz

A = Φ(r)dt+
B

2
(−ydx+ xdy) Fxy |r→∞ = B

• Take D’Hoker-Kraus background as fixed and add scalar field
• The scalar field equation results to be separable

Ψ(r, u) =
1√
2
R(r)U(u)

where u is the radial polar coordinate in the (x, y) plane
• U-equation has the following solution

U(u) = exp

(

− qB
4
u2
)

Thus, we have Superconducting Droplet Solutions
• The R-equation develops an effective mass:

m2
eff = m2 − q2Φ2

g
+ 2 q B e−2V

The Φ contribution lowers the effective mass, making the system unstable. However, the
magnetic field reverts the scalar field instability
−→ Returns us to normal phase at a critical magnetic field Bc
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External Magnetic Fields

• Critical Magnetic Field

• We solve the R-equation for the value Bc that returns us to the normal phase
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• The model predicts a near-Tc behaviour of Bc as

Bc ∼ (1− T/Tc)

in accordance to the critical fields measured in real superconductors
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External Magnetic Fields

• Magnetic Comparison

• According to GL Theory, the critical magnetic field is given by

BGL
c =

√
4π
|α|√
β

=

√

π

q C0Tc

O3

ξ

• We can compare the Bc calculated through the D’Hoker-Kraus solution (BDK
c ) with the Bc

computed by our GL Approach (BGL
c ) by computing the ratio BGL

c /BDK
c , evaluated at

T = Tc

0.22 0.24 0.26 0.28 0.30 0.32 0.34
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T

Ρ1�3

Bc
GL

Ρ2�3

q = 4 q = 5 q = 6

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

q

B0
GL

B0
DK

30



Our Bottom-Up Experience

• Our Minimal D=5 Model: Main Magnetic Results

• We have holographically computed the Ginzburg-Landau parameter κ and concluded that
our HSC is Type I

• Furthermore, the GL parameter κ as a function of temperature closely resembles the
behaviour of a real world high-Tc superconductor

• We have computed the critical magnetic field using the D=5 D’Hoker-Kraus solution for
the first time in the context of HSC and saw that it is consistent with GL computation
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A Different Model

• Looking for Changes

• So, having constructed our Ginzburg-Landau effective description, it is only natural to look
at how it can be altered by considering different bulk models. Let us then consider a
different kind of background...
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Introducing Lifshitz Scaling to Holographic Superconductivity

• [Dector. Nucl.Phys. B898 (2015)]

• Enter Lifshitz Background
[Kachru, Liu, Mulligan. Phys.Rev.D 78 (2008)], [Taylor. ITFA 48 (2008)]

• Motivation: The phase transition of some condensed matter systems are governed by
Lifshitz-like Fixed Points, which exhibit anisotropic scaling

t→ λzt x→ λx

z = Lifshitz Dynamical Critical Exponent

• This anisotropy breaks Lorentz invariance → Systems are Non-Relativistic

• There is a gravitational dual to Lifshitz fixed point systems, given by the background

ds2 = −r2zf(r)dt2 +
dr2

r2f(r)
+ r2

3
∑

i=1

dx2i

f(u) = 1−
rz+3
h

rz+3

T =
(z + 3)

4π
rzh

• In the isotropic case z = 1 we recover Schwarzschild AdS BH.

• Our Question: How does the anisotropy alters the Holographic SC phenomenology?
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Minimal D=5 Holographic Superconductor with Lifshitz Scaling

• The Bulk Model

• We propose the same D=5 bulk-model

S =

∫

d5
√
−g
(

−1

4
F 2 − |∂Ψ− iAΨ|2 −m2 |Ψ|2

)

under the Fixed Lifshitz Background.

• We use the same Bulk-Fields Ansatz

Ψ(r) = ψ(r)/
√
2 A = Φ(r)dt

• The scalar and gauge fields have asymptotics

ψ(r →∞) ≈ O−

r∆−

+
O+

r∆+
+ · · · Φ(r →∞) ≈ µ− ρ

r3−z
+ · · ·

∆± =
1

2

(

(z + 3)±
√

(z + 3)2 + 4m2

)

and the BF bound is now

m2 ≥ − (z + 3)2

4

• We will consider the integer values z = 1, 2 to see how the SC phenomenology deviates from
the isotropic case z =1.
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Studying Different Condensates

• Different Cases of Condensation

• To have a fuller phenomenological picture, we will study two cases of condensation

• Case I: Take mass
m2 = −3z

So

Ψ(r →∞) ≈ Oz
rz

+
O3

r3
+ · · ·

and set Oz = 0, so that the SC order parameter is O3 of dimension 3

• Case II: Take mass
m2 = −(z + 2)

So

Ψ(r →∞) ≈ O1

r
+
Oz+2

rz+2
+ · · ·

and set Oz+2 = 0, so that the SC order parameter is O1 of dimension 1
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Studying Different Condensates

• Condensates and Critical Temperature
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Studying Different Condensates

• Condensates and Critical Temperature

• The model predicts a near-Tc behavior as

O∆ ∼ (1− T/Tc)1/2

as real-world superconductors for all condensates and for all z

• However, we also observe that Tc changes with z:

Tc/ρz/3 z = 1 z = 2

Case I 0.198 0.087
Case II 0.517 0.351

• Thus, we conclude that anisotropy lowers the critical temperature
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Gauge Fluctuation and Penetration Length

• If we add the Gauge Fluctuation

A = Φ(r)dt+ e−iωt+ikyAx(r)

then we obtain holographically SC number density ns

Ax(r →∞) ≈ A(0)
x +

Jx

r1+z
+ · · · =⇒ ns = − Jx

A
(0)
x

• We can then compute the Penetration Length λ = 1/
√
4πns

0.05 0.10 0.15 0.20
0

2

4

6

8

10

T

Ρ1�3

Ρ1�3Λ O3

z = 1

Case I

0.02 0.04 0.06 0.08
0

2

4

6

8

10

T

Ρ2�3

Ρ1�3Λ O3

z = 2

Case I

• Near-Tc we find the behaviour
λ ∼ (1− T/Tc)−1/2

in accordance to real-world superconductors, for all condensates and all values of z
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Scalar Fluctuation and Coherence Length

• If we add the Scalar Fluctuation

Ψ(r, y) =
(

ψ(r) + eikyη(r)
)

/
√
2

then we obtain the wave number k for the eigenvalue equation L{η} = k2η. Then, from

〈O(k)O(−k)〉 ∼ 1

k2 + 1/ξ2
=⇒ |ξ| = 1/ |k|

• We can then compute the Coherence Length ξ
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• Near-Tc we find the behaviour
ξ ∼ (1− T/Tc)−1/2

in accordance to real-world superconductors, for all condensates and all values of z
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Ginzburg-Landau Approach with Lifshitz Scaling

• Ginzburg-Landau Effective Boundary Action

• Following the previous exposition, we now construct an effective GL action for the boundary
theory

• Again, to determine the GL order parameter |ΨGL| parameter we propose

|ΨGL|2 = NzO2
∆

and using the numerical equality
O2

∆

ns

∣

∣

∣

∣

T=Tc

= Cz

we obtain

Nz =
1

Cz

Thus, the GL order parameter can again be holographically determined.

• We compute the GL coefficients as in the previous exposition. The result is

|α| = 1

4ξ2
β =

1

4Nzξ2O2
∆

• Both coefficients retain the standard near-Tc behaviour for all condensates and values of z.

α ≈ α1(1− T/Tc) β ≈ β0 + β1(1− T/Tc)

• However, we also observe that their magnitude decreases for larger values of z
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Determining Ginzburg-Landau with Lifshitz Scaling

• Ginzburg-Landau Coefficients
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Holographic Superfluid Interpretation

• Holographic Superfluidity Point of View

• If we consider the case where we keep the U(1) symmetry in the boundary field theory as
ungauged, that is, global =⇒ We can take our system as a model for an Holographic
Superfluid

• Our bulk gauge field perturbation Ax has the holographic superfluid interpretation

Ax(r →∞) ≈ vx +
Jx

rz+1
+ · · ·

vx : Superfluid Velocity Jx : Supercurrent

• Particularly, we can compute the Critical Supercurrent Jc: The value of the supercurrent at
which the superfluid system passes to the normal phase

• According to GL theory, the supercurrent is given by

Jc = |Ψ∞|2
(

2

3

)3/2
√

|α| = 1

2Cz

(

2

3

)3/2 O2
∆

ξ
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Holographic Superfluid Interpretation

• The Critical Supercurrents

• Our computation of the critical current give
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• We find that the predicted near-Tc behaviour of Jc is

Jc ∼ (1− T/Tc)3/2

which is in agreement with measured Jc in real-world superfluids for all condensates and all
values of z
However, the magnitude is diminished by anisotropy
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Ginzburg-Landau Parameter and Lifshitz Scaling

• Finally, we can compute the GL Parameter κ = λ/ξ for different values of z
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• Taking the value of κ at the critical temperature Tc we find

κ z = 1 z = 2

Case I 0.527 0.467
Case II 0.070 0.002

• All values of κ are lower than 1/
√
2 ∼ 0.71 for all z =⇒ Our System is a Type I SC

• κ is always lower for higher values of z
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Magnetic Phenomena and Lifshitz Scaling

• Vortex Lattice Solutions

• To study the system under the presence of a magnetic field, we follow [Maeda, Natsuume,
Okamura. Phys.Rev.D 81 (2010)]

• We find that the most general scalar field solution is separable as

Ψ(1)(r, ~x) = ρ(r) exp

(

−B x
2

2

)

ϑ3(ν, τ)

where ϑ3 is the Elliptical Theta Function which has pseudo-periodicity and
periodically-located zeros in the (x-y) plane

• Thus, the Ψ(1) solution has a lattice vortex profile in the (x-y) plane
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Magnetic Phenomena and Lifshitz Scaling

• The Critical Magnetic Field

• Meanwhile, from the radial part of the solution ρ(r) we compute the critical magnetic field
Bc

0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0

T

Ρ1�3

Bc

Ρ2�3

Case I
O3

z = 1

0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.02

0.04

0.06

0.08

T

Ρ2�3

Bc

Ρ2�3

Case I
O3

z = 2

• Our model predicts the near-Tc behaviour for all z and condensates is

Bc ∼ (1− T/Tc)

in agreement with measured Bc
However, the magnitude is diminished for higher anisotropy
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Our Bottom-Up Experience with Lifshitz Scaling

• Minimal D=5 Model Adding Lifshitz Scaling: Main Results

• We have shown that the effective GL action for the boundary theory can be constructed in
the presence of a Lifshitz background

• We observe that the critical temperature is lowered by anisotropy

• We observe that near-Tc functional dependency on T of physical quantities is robust and is
not affected by anisotropy

• However, the magnitude of physical quantities (α, β, Jc, κ, Bc) is diminished by higher
anisotropy

• The Ginzburg-Landau parameter κ is lower than 1/
√
2 for all condensates and values of z,

so the system is always Type I

• We computed the critical magnetic field and found solutions with a vortex lattice profile
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Conclusion

• Final Analysis

• I have presented you with a good overview of the more phenomenological approach to
holographic superconductivity

• Using simple models, we constructed holographically a Ginzburg-Landau effective action for
the boundary theory

• In particular, we have computed the Ginzburg-Landau parameter κ and shown that the
system is Type I

• We have also computed the value of the critical magnetic field on different setups

• We have seen that holographic computations can reproduce with quite some detail the
specific phenomenology of superconducting systems
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Conclusion

Muchas Gracias!
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Additional Material.

Additional Slides
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Superconductivity in Just One Slide

• We Need to Talk About SC

• Discovered in 1911 by K. Onnes

• Defined by Loss of Resistivity+ Perfect Diamagnetism below a certain Critical
Temperature Tc

• First description given by the London Theory (1935).
Very Phenomenological.
Based on ns (taken as constant). Gives the London Equations.
However: Does not hold in strong magnetic fields.

• Next came Ginzburg-Landau Theory (1950).
Based on non-homogeneous |ΨGL(~x)|.
Accounts for SC + magnetic phenomenology.
However: Only valid near-Tc and is only an effective description.

• Finally: BCS Theory (1957).
Based on ∆k ∼ 〈c−k↓ck↑〉 and Cooper Pairing mediated by Phonon Interaction.
Very successful microscopic theory of most superconducting materials.

• ....And then: High Temperature Superconductivity.
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High-Temperature Superconductors: Some Basic Data

• General Properties
• Discovered first by Bednorz and Müller in 1986. (Instant Nobel Prize!)

• A material is considered a High-Temperature Superconductor is his critical temperature is
Tc ∼ 30K or higher. A typical High-Tc superconductor has actually Tc ∼ 90K.

• By a High-Temperature Superconductors, we will be referring to cuprate superconductors.
Cuprates are ferromagnetic ceramics that after slight doping present high-Tc
superconducting behaviour on cooling.

• The cuprates are structurally composed of 2-dimensional CuO2 layers, and superconductivity
occurs in these copper-oxide layers.

• They have an order parameter with d-wave symmetry

∆k ∼ cos kx − cos ky .
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Spin-Fermion Model. Advantages and Limitations

• Advantages of the SF Model

the Spin Fermion Model captures a lot of cuprate phenomenology

• Superconducting instability.

• d-wave order parameter ∆k ∼ cos kx − cos ky .

• NFL liquid behaviour from one loop corrections in the self energy.

• Limitations of the SF Model

However, it also has the following Very Serious Limitations

• It has a strong coupling: λ ∼ 2, while for usual Superconductors λ ∼ 0.3.
This makes it hard to get information out of the theory, because of limited use of
perturbative techniques

• There is a quasi-particle picture breakdown at the hot-spots of the Fermi Surface of the
cuprates (!!!).
This forbids us to use QFT techniques at all at some points.
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The Superconductor Characteristic Lengths

• The Superconductor Characteristic Lengths: Definitions

• In order to compute α and β, we first calculate holographically the Superconductor
Characteristic Lengths: λ and ξ.

• Penetration Length λ. External magnetic field have exponential decay inside
superconductor, following

∇2
B =

1

λ2
B

• Coherence Length ξ. Measure of spatial decay of small perturbations of |ΨGL| from
Minimum Value |Ψ∞|, which is the value of the order parameter deep-inside the SC

|ΨGL| = |Ψ∞|+ η(x)

η(x) ∼ exp(− |x| /ξ)
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The AdS/CFT Dictionary

• AdS/CFT: Minimal Elements

Large-N Strongly Coupled Classical Anti-deSitter
Quantum Gauge Field Theory ←→ Gravitational Theory

in d Dimensions in d+1 Dimensions
(Boundary Theory) (Bulk Theory)

• AdS/CFT+SC: Motivation
• The Dictionary

• The AdS/CFT Correspondence establishes a very clear Dictionary, between bulk and
boundary physical quantities and phenomena.

• The “Translator”: The Master Equation.
Given a bulk field φ with value at the boundary φ0

e−ΓCFT[φ0] ≡ ZString[φ0]

• With

Zstring[φ0] =

∫

φ0

Dφ e−SString ≈ e−SClassical Gravity

e−ΓCFT[φ0] =

〈

exp−
∫

ψ0O
〉

CFT
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Bulk-Dimension and Magnetic Phenomenology

• Back to Our Choice of Bulk-Dimension.

• We choose bulk-dimensions d=4+1 −→ boundary-dimension d=3+1. Why this choice?

• It is usually believed that boundary-dimension d=2+1 HSC must be Type II. Why is this
believed?

• “The Scaling Argument”: First, consider a dual field theory on d=2+1 (SC on a plane).
Then, apply a 3-dimensional magnetic field. Then, the free energy needed to expel magnetic
field scales as Volume, while the energy the system gains from being SC scales as Area.
Therefore, magnetic fields are never completely expelled (Bc1 = 0) and the system is Type
II.

• However, if both magnetic field and SC have the same spatial dimension 3, then there is a
direct thermodynamical competition that can make the SC Type I. And that is why.

• There is now evidence that a boundary dimension d=2+1 Holographic Superconductor can
indeed be Type I.
[Dias, Horowitz, Iqbal, Santos. JHEP 1404 (2014)]
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Different Phases: Normal Phase

• The Normal Phase

• The EOM of the system admit a trivial solution for the scalar

Ψ(r) = 0

which corresponds to a Null Order Parameter in the dual QFT, i.e. Normal Phase

• In this phase, for the metric and gauge field solution is exact and given by AdS
Reissner-Nordström BH

g(r) = r2 −
3r6h + ρ2

3r2hr
2

+
ρ2

3 r4

χ(r) = 0

Φ(r) = ρ

(

1

r2h
− 1

r2

)

• The Hawking-Temperature is

T =
6r6h − ρ2
6πr50
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Near-Horizon Instability

• The Superconducting Instability

• Summary: The near-horizon region of the normal AdS-RN-BH at T = 0 has a AdS2 × R
3

form. A small scalar field has an effective mass m2
eff = m2 − 2q2, so the charge can drive the

mass below the AdS2 BF bound, making the near-horizon unstable and leading to hairy BH
solutions. Hairy solution translates to U(1) symmetry breaking and condensation in the dual
QFT’s order parameter.

• In the T = 0 limit, changing to near-horizon coordinate r̃ = r − 1 (rh = 1), the RN-BH
metric is AdS2 × R

3 (with a different radius)

ds2 ≈ −12 r̃2dt2 +
1

12 r̃2
dr̃2 + d~x23

• The scalar field equation in this limit is

ψ′′ +
2

r̃
ψ′ +

2q2 −m2

12 r̃2
ψ = 0 m2

EFF =
m2 − 2q2

12

• So, there is a near-horizon instability if the mass is below the AdS2 BF bound

m2 − 2q2 < −3

• Thus, in the window
−4 < m2 < 2q2 − 3

one has asymptotic AdSd+1 geometry and an instability in the near-horizon AdS2

• Instability will lead to Scalar Hair Solutions
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AdS/CFT and Superconductivity

• The Basic Phenomenological Elements of a ORDINARY Superconductor

Any very minimal SC theory must have the following properties:

• The theory will posses the usual electromagnetic gauge invariance → U(1) local symmetry.

• The spontaneous breaking of this U(1) symmetry leads to a SC phase.

• The symmetry breaking is provoked by the condensation of a Charged SC Order Parameter

This elements suffice to have Infinite Conductivity

59



AdS/CFT and Superconductivity

• The Basic Phenomenological Elements of a HOLOGRAPHIC Superconductor

• U(1) local symmetry
-The breaking of this U(1) in the bulk leads to a SC phase in the boundary
-Local U(1) theory in the bulk is dual to a global U(1) theory in the boundary. We will
always assume that the global U(1) theory can be promoted to local by gauging of the the
dual theory

• Massive Charged Bulk Scalar Field Ψ
-This will translate to a SC Order Parameter in the dual theory (Note: s-wave)
-Effective holographic description of dual multi-fermion bound state
-The AdSd+1 bulk theory is stable if scalar mass is above BF Bound

m2 ≥ −d
2

4

(

m2 ≥ −4 for the d=4 case
)

• U(1) Gauge Field Aµ
-Required by U(1) Symmetry
-Introduces Charge Density in Boundary Theory

• Gravity
-Einstein-Hilbert-Maxwell. This will give gauge solutions with charge density
-Negative Cosmological Constant: This will give Vacuum AdS Solutions
-Black Hole Solution: This will give Temperature in dual QFT
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Determining Ginzburg-Landau: The GL Order Parameter

• The Ginzburg-Landau Order Parameter |ΨGL|

• GL theory predicts
|ΨGL| ∼ (1− T/Tc)1/2

which has the same critical exponent as O3. We match exponents and simply propose

|ΨGL|2 = NqO2
3

• To determine Nq we use the following Numerical Equality

q
O2

3

ñs

∣

∣

∣

∣

T=Tc

= C0Tc(q)
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Determining Ginzburg-Landau: The GL Order Parameter

• Then, if we use the Ginzburg-Landau Relation

|ΨGL|2 = ns

we can finally obtain

Nq =
1

q C0Tc(q)

• Thus, the GL order parameter is holographically identified.
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Determining Ginzburg-Landau: The Ginzburg-Landau Coefficients

• The Ginzburg-Landau Coefficients α and β

Having computed the characteristic lengths, we now can compute the GL Coefficients

• The α coefficient is computed directly from GL Theory

|α| = 1

4ξ2

• To compute β, we use the GL Relation

|Ψ∞|2 =
|α|
β

where |Ψ∞| is the value of condensate deep-inside the SC, where external fields and
gradients are negligible.

• Since we are working with small field perturbations, we consider ourselves in that
approximation. Then |ΨGL| ≈ |Ψ∞| and

β =
|α|
|Ψ∞|2

=
|α|

NqO2
3

=
q C0Tc

4

1

ξ2O2
3
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External Magnetic Fields

• Constant Magnetic Field

• We apply a constant magnetic field following the magnetic-brane solution by
[D’Hoker, Krauss. JHEP 1003 (2010)]. First time done in HSC.

• In a Nutshell: We start with Einstein-Hilbert-Maxwell

S =

∫

d5x
√
−g
(

R+
12

L2
− 1

4
F 2

)

• We add a Magnetic Component to the gauge field ansatz

A = Φ(r)dt+
B

2
(−ydx+ xdy) Fxy |r→∞ = B

ds2 = −g(r)dt2 +
dr2

g(r)
+ e2V (r)

(

dx2 + dy2
)

+ e2W (r)dz2

and solve in a perturbative manner around B = 0

g(r) = g0(r) +B2g2(r) + · · · Φ(r) = Φ0(r) +B2Φ2(r) + · · ·

V (r) = V0(r) +B2V2(r) + · · · W (r) =W0(r) +B2W2(r) + · · ·
which is a reliable expansion if B ≪ T 2

• The Hawking Temperature is

T =
24r6h − 4ρ2 −B2r2h

24πr5h
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Gauge Fluctuation: Numerical Equality

• Confirming the Numerical Equality

• Having computed ns, we can also confirm the numerical equality

O2
∆

ns

∣

∣

∣

∣

T=Tc

= Cz

where Cz depends only of z for each case of condensation considered
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Magnetic Phenomena and Lifshitz Scaling

• Magnetic Fields: A Series Expansion

• We follow [Maeda, Natsuume, Okamura. Phys.Rev.D 81 (2010)] and propose a series
expansion for the bulk fields

Ψ(~x, r) = ǫ1/2Ψ(1)(~x, r) + ǫ3/2Ψ(2)(~x, r) + · · ·

Aµ(~x, r) = A
(0)
µ (~x, r) + ǫA

(1)
µ (~x, r) + · · ·

with

ǫ ≡ Bc −B
Bc

ǫ≪ 1

• The Gauge Solution: At zero-order we have solutions

A
(0)
t ≡ Φ(r) = µ− ρ

r3−z
A

(0)
y = B x

• The Scalar Solution: The scalar field at first-order has a most general, separable solution

Ψ(1)(r, ~x) = ρ(r) exp

(

−B x
2

2

)

ϑ3(ν, τ)

where ϑ3 is the Eliptical Theta Function which has pseudo-periodicity and
periodically-located zeros in the (x-y) plane

• Thus, the Ψ(1) solution has a lattice profile in the (x-y) plane.
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