Violación de número leptónico en $\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_{\tau}$ en el experimento Belle II

Mayo 2016

Presenta: MC. David Rodríguez Pérez

Asesores:

Dr. Pedro Podesta Lerma

Dra. Isabel Domínguez Jiménez

XXX Reunión Anual de la División de Partículas y Campos de la SMF

Contenido

Introducción

Hipótesis

SuperKEKB Belle II Objetivos

Basf2(Belle Analysis Framework 2) Antecedentes

Búsqueda de $\Delta L = 2$

Análisis

Conclusiones

Planes

Modelo Estándar

• Entonces el neutrino es ν_L o ν_R

• Entonces el neutrino es ν_L o ν_R

•
$$\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$$

- Entonces el neutrino es v_L o v_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- ► consecuencia, *m* = 0

- Entonces el neutrino es v_L o v_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- ► $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)

- Entonces el neutrino es v_L o v_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- ► $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)

• • • •

- Entonces el neutrino es ν_L o ν_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- ► $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)
- • •
- Conservación del número leptónico

- Entonces el neutrino es ν_L o ν_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)
- • •
- Conservación del número leptónico
- • •

- Entonces el neutrino es ν_L o ν_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)
- • •
- Conservación del número leptónico
- • •
- Problema de los neutrinos solares, 1970

- Entonces el neutrino es ν_L o ν_R
- $\mathcal{L}^{m}(x) = -m\bar{\nu}(x)\nu(x) = -m(\bar{\nu}_{L}(x)\nu_{R}(x) + \bar{\nu}_{R}(x)\nu_{L}(x)) = 0$
- consecuencia, m = 0
- ► $\nu(x) = \nu_L(x)$ (Goldhaber, Grondzins y Sunyar en 1958)
- • •
- Conservación del número leptónico
- • •
- Problema de los neutrinos solares, 1970
- Oscilación de neutrinos, 2002. $m \neq 0$!

Neutrino como partícula de Dirac

Neutrino como partícula de Dirac

Presencia de singletes fermiónicos N_R

Neutrino como partícula de Dirac

- Presencia de singletes fermiónicos N_R
- Conservación del número leptónico L

Hipótesis

- Presencia de singletes fermiónicos N_R
- Conservación del número leptónico L
- Acoplamientos de Yukawa muy pequeños

Hipótesis

- Presencia de singletes fermiónicos N_R
- Conservación del número leptónico L
- Acoplamientos de Yukawa muy pequeños

Neutrino como partícula de Majorana

Singletes de mano derecha muy pesados

Hipótesis

- Presencia de singletes fermiónicos N_R
- Conservación del número leptónico L
- Acoplamientos de Yukawa muy pequeños

- Singletes de mano derecha muy pesados
- No conservación del número leptónico

► Localizado en el laboratorio KEK

Experimento Belle II

- Localizado en el laboratorio KEK
- ► Fabrica de mesones *B*'s

Experimento Belle II

- Localizado en el laboratorio KEK
- ► Fabrica de mesones *B*'s
- ► Colisiona *e*⁺ a 4 GeV y *e*⁻ 7 GeV (SuperKEKB)

Experimento Belle II

- Localizado en el laboratorio KEK
- ► Fabrica de mesones *B*'s
- ► Colisiona *e*⁺ a 4 GeV y *e*⁻ 7 GeV (SuperKEKB)
- ► En el punto de interacción se localiza el detector Belle II

Belle II

• Conocer la naturaleza de los ν 's

- Conocer la naturaleza de los ν 's
- Trabajar en un nuevo decaimento a cuatro cuerpos, el cual $\Delta L = 2$

- Conocer la naturaleza de los ν 's
- ► Trabajar en un nuevo decaimento a cuatro cuerpos, el cual $\Delta L = 2$
 - Simulaciones usando el método MC
 - Conocer las distribuciones de los obsevables de interés

Estructura

Simulación

Antecedentes

Canales de decaimiento

Canales de decaimiento

• $\tau - \rightarrow \pi^+ \mu^- \mu^- \nu_\tau$ (BR $\lesssim 10^{-8}$ %) [2], señal

Canales de decaimiento

- $\tau \rightarrow \pi^+ \mu^- \mu^- \nu_\tau$ (BR $\lesssim 10^{-8}$ %) [2], señal
- $\tau \to \pi^+ \pi^- \pi^- \nu_{\tau}$ (BR 9.31 ± 0.06%) [1], ruido

Canales de decaimiento

- $au
 ightarrow \pi^+ \mu^- \mu^-
 u_{ au}$ (BR \lesssim 10⁻⁸%) [2], señal
- $\tau \to \pi^+ \pi^- \pi^- \nu_\tau$ (BR 9.31 ± 0.06%) [1], ruido
- $\tau \rightarrow \pi^- \mu^+ \mu^- \nu_\tau$ (BR $\sim 10^{-6}$ %) [2], ruido

Canales de decaimiento

- $\tau \to \pi^+ \mu^- \mu^- \nu_\tau$ (BR $\lesssim 10^{-8}$ %) [2], señal
- $\tau \to \pi^+ \pi^- \pi^- \nu_{\tau}$ (BR 9.31 ± 0.06%) [1], ruido
- $\tau \rightarrow \pi^- \mu^+ \mu^- \nu_\tau$ (BR $\sim 10^{-6}$ %) [2], ruido

[1] K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL:http://pdg.lbl.gov)

[2] Néstor Quintero, Estudios de violación del número leptónico en procesos resonantes inducidos por un neutrino de Majorana.
 (2015)

Momento transversal P_t

Suficiente energía depositada en los detectores

- Momento transversal P_t
 Suficiente energía depositada en los detectores
- Pseudorapidez η

- Momento transversal P_t
 Suficiente energía depositada en los detectores
- Pseudorapidez η
- Ángulo polar θ

Análisis

- Momento transversal P_t
 Suficiente energía depositada en los detectores
- Pseudorapidez η
- Ángulo polar θ

Decaimientos dentro del detector.

Análisis

Las observables a considerar son:

- Momento transversal P_t
 Suficiente energía depositada en los detectores
- Pseudorapidez η
- Ángulo polar θ

Decaimientos dentro del detector.

Se generó una muestra de 50,000 eventos de cada uno de los canales.

Este análisis se basará en conocer la eficiencia del detector. Realizando cortes en las siguientes variables:

- Masa invariante del τ .
- Capacidad de identificación de π 's y μ 's.
- Masas restringidas por el haz.

P_t con cortes en la masa invariante a 1.0 < M_{τ} < 1.8, 1.3 < M_{τ} < 1.8 y 1.5 < M_{τ} < 1.8

P_t con cortes en la identificación a 1.0 < M_{τ} < 1.8, 1.3 < M_{τ} < 1.8 y 20% y 40% para μ 's y 80% para π 's (τ^*) $\rightarrow \pi^* \mu^* \mu^* \nu$ (τ^{*}) → π^{*} μ^{*} μ^{*} ν Events/0.054 GeV Events/0.054 GeV p [GeV] p [GeV] (τ) $\rightarrow \pi^* \mu^* \mu^* \nu$ (τ') → π^{*} μ' μ' ν Events/0.054 GeV Events/0.054 GeV construction p,[GeV] p [GeV]

$P_t \text{ con cortes en las masas restringidas}_{a \ 1.0 \ < \ M_\tau \ < \ 1.8, \ 20\% \ \text{en } \mu \text{'s y } M_{bc} \ \le \ 4 \text{GeV}}$

P_t con cortes en las masas restringidas a 1.0 < M_{τ} < 1.8, 20% en μ 's y $M_{bc} \le$ 4GeV (Ruido)

P_t con cortes en las masas restringidas a 1.0 < $M_{ au}$ < 1.8, 20% en μ 's y $M_{bc} \le$ 4GeV (Ruido)

Total de eventos reconstruidos

Channel	$1.0 < M < 1.9$ and $M_{bc} \le 4$ GeV		
	rec	sim	
$\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_\tau$	11,991	11,680	
$\tau^- \rightarrow \pi^+ \mu^- \mu^+ \nu_\tau$	13,208	10,834	
$\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_\tau$	11,812	11,116	

- Estamos utilizando una muestra generica de tau's generada por la colaboración para conocer la eficiencia de la reconstrucción.
- Provando herramientas de análisis multivariado.

Conclusiones

Estudiamos la posibilidad de encontrar $\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_{\tau}$, canal que viola el número leptónico por dos unidades ($\Delta L = 2$).

Con el fin de tener una aproximación real al experimento usamos dos tipos de datos **Reconstruidos** y **Simulados** para conocer los eventos bien reconstruidos.

Se pudo observar la importancia de la ventana de masa invariante, la identificación de μ 's y la masa restringida por el haz.

Reconstruimos correctamente una contidad considerable de eventos. Por lo que en el experimento Belle II tendríamos la capacidad de conocer la naturaleza del neutrino y lo que esto implica.

Mejorar el análisis al realizar cortes en otras variables. Incluir el ruido de los demás decaimientos.

Gracias por su atención!

Neutrinos

22

Propiedades [1]

- m < 2 eV, NC = 90% (decaimiento del tritium)
- $\tau/m > 300 \text{ s/eV}$ (reactor) (tiempo/masa media)
- $\tau/m > 7 \times 10^9$ s/eV (solares)
- Momento magnético μ < 0.29 × 10⁻¹⁰μ_B (reactor) (μ_B, magnetón de Bohr)

Número de tipos de neutrinos

- ▶ *N* = 2.984 ± 0.008 (datos de LEP)
- $N = 2.92 \pm 0.05$ (mediciones directas del ancho del *Z*)

Neutrinos de Majorana

El término de masa de Majorana se puede escribir de la siguiente manera

$$-\mathcal{L}_{masa}^{M}=rac{1}{2}ar{
u}_{L}^{\prime}M_{L}(
u_{L}^{\prime})^{c}+h.c.$$

donde M_L es una matriz simétrica compleja $(M_L^T = M_L)$, $(\nu_L)^c$ la contraparte conjugado de carga (de quiralidad derecha). Esta matriz puede ser diagonalizada por la transformación $U^{\dagger}M_LU^* = m_{\nu} = diagm_1, m_2, m_3$. Para obtener

$$-\mathcal{L}_{masa}^{M}=rac{1}{2}ar{
u}_{L}M_{L}(
u_{L})^{c}+h.c.$$

donde $\nu'_L = U\nu_L$ y $(\nu'_L)^c = U^*(\nu_L)^c$.

Al realizar una transformación de fase global se obtiene la caracteristica más importante, la violación de número leptónico,

$$I_{\alpha} \rightarrow e^{i\theta\Lambda_L}I_{\alpha} \ (\alpha = e, \mu, \tau), \quad \nu_L \rightarrow e^{i\theta\Lambda_L}\nu_L$$

entonces

$$\mathcal{L}^{M}_{masa}
ightarrow e^{-2i heta\Lambda_{L}}\mathcal{L}^{M}_{masa}.$$

Como consecuencia $\Delta L = 2$ [2].

Masa invariante

Channel	1.0 < M < 1.9 GeV		1.3 < M < 1.9 GeV		1.5 < M < 1.9 GeV	
	rec	sim	rec	sim	rec	sim
$\tau^- \rightarrow \pi^+ \mu^- \mu^- \nu_{\tau}$	53,192	28,429	31,275	14,419	16,036	4,845
$\tau^- \rightarrow \pi^+ \mu^- \mu^+ \nu_{\tau}$	94,495	28,657	54,084	14,515	26,206	4,925
$\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau}$	83,515	33,454	49,679	17,513	26,611	6,339

Capacidad de identificación de μ 's

Channel	1.0 < M < 1.9 GeV			1.3 < M < 1.9 GeV				
$ $ PID $\mu \ge$	20	1%	40)%	20	1%	40	%
$\tau^- \rightarrow$	rec	sim	rec	sim	rec	sim	rec	sim
$\pi^+\mu^-\mu^-\nu_\tau$	27,258	20,789	24,119	18,864	14,879	10,584	13,196	9,681
$\pi^{+}\mu^{-}\mu^{+}\nu_{\tau}$	38,330	20,883	32,848	19,064	21,184	10,663	18,226	9,787
$\pi^{+}\pi^{-}\pi^{-}\nu_{\tau}$	45,109	22,959			26,363	11,713		

Reconstrucción

Señales falsas

False signal	$1.0 < M < 1.9$ and $M_{bc} \leq 4$ GeV
$\tau^- \rightarrow \pi^+ \mu^- \mu^+ \nu_{\tau}$	2,825
$\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu_{\tau}$	537

Referencias

[1] K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL:http://pdg.lbl.gov)

[2] Néstor Quintero, Estudios de violación del número leptónico en procesos resonantes inducidos por un neutrino de Majorana. (2015)

η con cortes en la masa invariante a 1.0 < \textit{M}_{τ} < 1.8, 1.3 < \textit{M}_{τ} < 1.8 y 1.5 < \textit{M}_{τ} < 1.8

θ con cortes en la masa invariante a 1.0 < M_{τ} < 1.8, 1.3 < M_{τ} < 1.8 y 1.5 < M_{τ} < 1.8

Señales falsas

