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Problems in Big Bang Cosmology

Despite the success of the big bang cosmology (BBC), some puzzling
mysteries remain unexplained.

The horizon problem: In the original BBC, several regions of the
CMB where causally disconnected at the time of recombination.
However, the CMB shows a high degree of homogeneity among all
its regions.

The flatness problem: Measurements indicate that the current
universe is nearly flat. Predictions indicate that its curvature should
have deviated to an open or a closed universe over time, unless it
was nearly exactly flat from the beginning to an enormous degree of
precision.
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Slow-Roll Inflation

Considering a flat universe and a homogeneus scalar field φ, the
expressions for the energy density and pressure are

ρφ =
1
2
φ̇2 + V (φ), pφ =

1
2
φ̇2 − V (φ).

Note that when φ̇2 � V (φ), the potential V can contribute
dominantly to the energy density and the pressure, the resulting
equation of state is

pφ = −ρφ

Accelerated expansion!

A scalar with slow roll dynamics may accelerate the
expansion of the universe.
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Slow-Roll Inflation: Parameters
Let’s define slow-roll parameters and set conditions over their
values. The main slow-roll parameters are:

ε = −
Ḣ
H2 , η = −

φ̈

Hφ
+ ε . (1)

I ε<1 sets the limit for inflation to happen
I η ensures that the second derivative φ̈ remains negligible as

required by slow rolling.

The slow roll parameters in terms of V (φ) are

ε ≡
M2

P

16π

(
V ′

V

)2

, η ≡
M2

P

8π
V ′′

V
, (2)

were the primes indicate the number of derivatives with respect of
φ.
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Slow-Roll Inflation: Parameters

We can write the CMB properties as functions of the slow-roll
parameters

ns = 1 − 6ε + 2η, r = 16ε ,

nr = 16εη − 24ε2 − 2γ, ∆
2
R =

V
24π2ε

,

where γ ≡ [M2
P/(64π)]V ′V ′′′/V 2 is a higher order slow-roll

parameter.

To measure the amount of inflation between some time ti and tend,
we define the number of e-folds, the exponential growth of the scale
factor, as

N ≡ ln
(
a(tend)
a(ti)

)
=

2
√
π

MP

∫ φi

φend

dφ
√
ε

. (3)
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Axion Monodromy Inflation

Consider two complex scalar fields Φ and χ that transform under
two discrete symmetry groups ZΦp × Z

χ
r as

Φ→ exp(2πi/p)Φ and χ → exp(2πi/r) χ

where p and r are integers. For p ≥ 5 and r ≥ 5, the renormalizable
terms in the potential are

V (Φ, χ) = −m2
Φ |Φ|

2 +
λΦ
2
|Φ|4 −m2

χ | χ |
2 +

λχ

2
| χ |4 + λp |Φ|

2 | χ |2,

Is easy to see that the following reparameterization leaves a flat
potential for θ and ρ

Φ =
φ0 + fθ
√

2
exp(iθ/fθ ) and χ =

χ0 + fρ
√

2
exp(iρ/fρ).
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Axion Monodromy Inflation

The discrete symmetry ZΦp × Z
χ
r serves four purposes:

1. it assures that there are goldstone bosons that have no
potential generated by renormalizable couplings,

2. it will serve as a flavor symmetry to create a hierarchy of
standard model fermion Yukawa couplings,

3. it will lead to the correct pa�ern of couplings in a new gauge
sector that provides for the desired form of the inflaton
potential,

4. it will keep quantum gravitational corrections to the potential
highly suppressed.
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Axion Monodromy Inflation

Extend the SM gauge group to include SU(N1)×SU(N2), together
with the new fermions with charges

AL,AR ∼ (N1, 1) and B(i)
L ,B

(i)
R ,CL,CR ∼ (1,N2).

The Yukawa type interactions between the new fermions and the
scalar Φ and χ are

L ⊃ h1ĀRAL χ +

n∑
i=1

h(i)
2 B̄(i)

R B(i)
L χ + h3C̄RCLΦ

∗ + h.c. . (4)

The anomalous global U(1) symmetries lead to the interactions

g2
1

32π2
*
,

ρ

fρ
+
-
F1F̃1 +

g2
2

32π2
*
,

nρ
fρ
−
θ

fθ
+
-
F2F̃2. (5)
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Axion Monodromy Inflation

The resulting potential is, a�er a field redefinition of the form
ρ = c ρ̃ + s θ̃ and θ = c θ̃ − s ρ̃

V ( ρ̃, θ̃) = Λ4
1


1 + cos *

,

c ρ̃ + sθ̃
f1

+
-


+ Λ4

2


1 − cos

(
ρ̃

f

) , (6)

where f1 = fρ = fθ = nf2 and f = f1f2/
√
f 2
1 + f

2
2 . The potential

presents trenches whose position is given by

sin
(
ρ̃

f

)
− s c

Λ4
1

Λ4
2

sin *
,

c ρ̃ + sθ̃
f1

+
-
= 0. (7)

Using the equations of motion for ρ and θ we can find the trajectory
followed by the inflaton

ρ̈ + 3H ρ̇ +
∂V
∂ρ
= 0, θ̈ + 3Hθ̇ +

∂V
∂θ
= 0.
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Termination without Waterfalling

f1 = 0.22
√

2, f2 = f1/21, Λ1 = Λ2 = 0.006.

ns = 0.96, r = 0.060, nr = −0.00046, ∆
2
R = 2.2 × 10−9.
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Termination with Waterfalling

f1 = 0.22
√

2, f2 = f1/17, Λ1 = 3.38 × 10−3, Λ2 = 1.61 × 10−3.

ns = 0.96, r = 0.0078, nr = −7.2 × 10−5, ∆
2
R = 2.2 × 10−9.

11 / 17



Comparing with Observations

Data taken from "Planck 2015 Results. XX. Constraints on inflation."
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Flavor Symmetries

I There are 27 free parameters in the standard model related to
flavor physics: Yukawa couplings

I There is a notable hierarchy between the masses of the charged
fermions (λ ≈ 0.22 is the Cabibbo angle)

mu : mc : mt ≈ λ
8 : λ4 : 1, md : ms : mb ≈ λ

4 : λ2 : 1,

me : mµ : mτ ≈ λ
5 : λ2 : 1

I Small mixings for quarks. Neutrino oscillation imply large
mixing for leptons

We approach these issues through discrete flavor symmetries.
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Flavor Symmetries

The flavon fields Φ and χ will form higher-dimension operators
with the Yukawa couplings of the standard model. Given our choice

〈Φ〉/M∗ = 〈χ〉/M∗ = λ

the size of these entries will be determined by powers of the
Cabibbo angle λ. As an example we consider the special case ZΦ21.
The couplings to the flavon will have the form

1

Mk
∗

Q jLHΦ
kujR + h.c.,

where k is an integer that depends on the charge assignments. The
corresponding Yukawa coupling will be of order λk .
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Flavor Symmetries

The charge assignments for the standard model fermions under ZΦ21
and the are given below

Q1L Q2L Q3L ucR ccR tcR dcR scR bcR
6 5 3 2 -1 -3 -1 -2 -2

L1L L2L L3L ecR µcR τcR νc1R νc2R νc3R
0 0 0 5 3 1 −3 −3 −3
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Flavor Symmetries

Using the previous table we obtain the following Yukawa matrices
by considering the lowest order operators.

Yu =
*..
,

λ8 λ5 λ3

λ7 λ4 λ2

λ5 λ2 1

+//
-
, Yd =

*..
,

λ5 λ4 λ4

λ4 λ3 λ3

λ2 λ λ

+//
-
,

Ye =
*..
,

λ5 λ3 λ

λ5 λ3 λ

λ5 λ3 λ

+//
-
,

These achieve the desired masses ratios

mu/mt ∼ λ
8, mc/mt ∼ λ

4, md/mb ∼ λ
4, ms/mb ∼ λ

2.

16 / 17



Final Remarks

With this project we achieved a number of things:

1. Inflation presents a solution to two notable problems of big
bang cosmology: the horizon and the flatness problems.

2. Our setup suggests that the complex scalars involved in
inflation may be the flavor symmetry breaking fields that give
structure to the Yukawa matrices.

3. We showed that the current data on the CMB can be
accommodated by a multi-field axion-monodromy inflation.

4. By considering this approach, the vevs of the complex scalars
remained sub-Planckian.

5. The suggested approach is not unique. The vast amount of
possibilities surely allows more compelling or clever
constructions.
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