Resultados

Conclusiones

Adolfo Guevara

Contribución de dispersión luz por luz hadrónica al g - 2 del muón.

Adolfo Guevara

Departamento de Física Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)

> en colaboración con Gabriel López Castro y Pablo Roig Phys. Rev. D89 (2014) 073016 y trabajo en progreso

XXX Reunión Anual, DPyC, 23 mayo 2016

aμ

Factores de forma

Resultado

Conclusiones

Contenido

Propósito

 a_{μ}

Factores de forma

Resultados

Conclusiones

Propósito

 El propósito de este trabajo es reducir la incertidumbre teórica en el cálculo del a_μ, cuya principal fuente de incertidumbre viene del las contribuciones hadrónicas. Por esto, analizamos la contribución de dispersión luz por luz hadrónica usando Teoría Quiral de Perturbaciones con resonancias (RχT).

Momento magnético anómalo a_{μ}

 Se define como las correcciones cuánticas al factor giromagnético g

$$\mathsf{a}_\ell := rac{\mathsf{g}_\ell - 2}{2}.$$

- Existe una discrepancia entre el valor experimental¹ y la predicción teórica² de $\sim 3.5\sigma$.
- El error experimental es de $\delta a_{\mu}^{EXP} = 63 \times 10^{-11}$, mientras que la incertidumbre teórica es de $\delta a_{\mu}^{SM} = 46 \cdot 10^{-11} \oplus 26 \cdot 10^{-11}$
- Hay planes para reducir³ el error experimental a 16×10^{-11} .

¹G. W. Bennet et al., [Muon g-2 Collab.],PRD73(2006)
²K.A. Olive et al., (Particle Data Group), Chin. Phys.C38(2014)
³Venanzoni, G., [Fermilab E989 Coll.], arXiv:1411.2555 [hep-ph], B. Shwartz, PHIPSI15 Conference talk

Contribuciones Hadrónicas

- Se tienen tres tipos principales de contribuciones: QED (dominante), EW y Hadrónicas. La última contribución domina la incertidumbre.
- Ésta tiene dos tipos de subcontribuciones: Polarización del Vacío Hadrónico (HVP) y Dispersión luz por luz (HLbL).
- La mayor incertidumbre viene de HVP ($\delta a_{\mu}^{HVP} = 46 \cdot 10^{-11}$). La incertidumbre en HLbL es de $\delta a_{\mu}^{HLbL} = 26 \cdot 10^{-11}$.

Nuestra contribución

- Para HLbL hay tres contribuciones. El intercambio de mesón de la figura a) puede incluir resonancias axiales, excalares, etc.
- Usando⁴ R χ T calculamos intercambio de los pseudoescalares más ligeros en el diagrama a).
- Existe una cancelación⁵ entre el resto de los diagramas dando contribución total $\sim \frac{1}{10}$ de la del diagrama a).

P.D. Ruíz-Femenía *et al.*, JHEP 0307 (2003) ⁵F. Jegerlehner and A. Nyffeler, Physics Reports 477 (2009)

• Por medio de $R\chi T$ encontramos⁶

$$\begin{split} F_{\pi\gamma^*\gamma^*}(p^2,q^2,r^2) &= \frac{2r^2}{3F} \left[-\frac{N_C}{8\pi^2 r^2} + 4F_V^2 \frac{d_3(p^2+q^2)}{(M_V^2-p^2)(M_V^2-q^2)r^2} \\ &+ \frac{4F_V^2 d_{123}}{(M_V^2-p^2)(M_V^2-q^2)} + \frac{16F_V^2 P_3}{(M_V^2-p^2)(M_V^2-q^2)(M_P^2-r^2)} \\ &- \frac{2\sqrt{2}}{M_V^2-p^2} \left(\frac{F_V}{M_V} \frac{r^2 c_{1235} - p^2 c_{1256} + q^2 c_{125}}{r^2} + \frac{8P_2 F_V}{(M_P^2-r^2)} \right) + (q^2 \leftrightarrow p^2) \right] \end{split}$$

 Donde p², q² y r² son los momentos de los fotones y el π⁰, respectivamente. P₂ y P₃ son acoplamientos con resonancias pesudoescalares. Los demás parámetros se fijaron del comportamiento asintótico⁷ de funciones de Green VVP.

Parámetros de $F_{\pi\gamma\gamma}$

 BaBar⁸ mostró un comportamiento diferentea B-L⁹, por lo que decidimos¹⁰ ajustar P₂ usando estos y datos de Belle¹¹.

⁹S. Brodsky y G. Farrar, PRL31 (1973), G. P. Lepage y S. Brodsky PRD22 (1980)
¹⁰P. Roig, AG, G. López Castro, PRD89 (2014)
¹¹C. P. Shen *et al.*, [Belle Collab.], PRD88(2013)

Parámetros de $F_{\pi\gamma\gamma}$

- Previamente se determinó¹² F_V ajustando datos de BaBar del decaimiento τ → ν_τ3π, con un error de 5%, por lo que lo variamos 10% alrededor del valor asintótico.
- Hay un buen acuerdo debido al valor de P_2 , del ajuste de $e^+e^- \rightarrow e^+e^-\pi^0$ (diapositiva previa), obteniendo

$$P_2 = -(1.13 \pm 0.12) \cdot 10^{-3} \text{ GeV}$$

• De $\pi(1300) \rightarrow \gamma \gamma$ y $\pi(1300) \rightarrow \rho \gamma$ obtenemos

$$P_3 = -(1.2 \pm 0.3) \cdot 10^{-2} \text{ GeV}^2$$

• Teniendo así que $a_{\mu}^{\pi^0 LbL} = 6.66 \pm 0.21 \times 10^{-10}$, lo cual compara muy bien con resultados anteriores¹³.

¹²O. Shekhovtsova et al. PRD 88 (2013)

¹³K. Kampf y J. Novotný, PRD84 (2011), tienen una incertidumbre $F_V^{Kampf} \sim 8.4\%$ (en el 10% de variación del F_V asintótico) y no usan datos de Belle. Adolfo Guevara

• Una vez determinados los acoplamientos para π TFF, para $\eta^{(\prime)}$ quedan completamente determinados en función de este. Así se calcula la contribución para η

$$a_{\mu}^{\eta LbL} = (2.04 \pm 0.44) imes 10^{-10}$$

• para η'

$$a_{\mu}^{\eta'LbL} = (1.77 \pm 0.23) imes 10^{-10}$$

• Teniendo una valor para intercambio de pseudoescalares de

$$a_{\mu}^{PLbL} = (10.47 \pm 0.54) imes 10^{-10}$$

• Al sumar las contribuciones restantes al HLbL se tiene¹⁴

$$a_{\mu}^{HLbL} = (11.8 \pm 2.0) imes 10^{-10}$$

¹⁴F. Jegerlehner and A. Nyffeler, Physics Reports 477 (2009)

• Comparando nuestro resultado con análisis previos.

$a_{\mu}^{HLbL} \cdot 10^{10}$	Contribución
11.6 ± 4.0	F. Jegerlehner and A. Nyffeler Phys.Rep 477(2009)
10.5 ± 2.6	Prades, De Rafael and Vainshtein ¹⁵
	Advanced series on directions in high energy physics. Vol. 20
11.8 ± 2.0	Nuestro resultado

¹⁵Prades *et al.* sólo incluyen el loop de *charm* en la evaluación de quarks pesados.

Propuesta de nuevo observable

• Esto nos llevó a proponer la medición de $\frac{d}{ds_1}\sigma(e^+e^- \rightarrow \mu^+\mu^-\pi^0) \ @(1.02 \ GeV)^2(KLOE-2)$ como una forma nueva de medir $F_{\pi\gamma\gamma}$, siendo s_1 la masa invariante del dileptón $\mu^+\mu^-$.

Trabajo en progreso

• Para obtener una predicción más precisa, estamos trabajando en Decaimientos Dalitz dobles,¹⁶ es decir

$$\pi^0, \eta^{(\prime)} \to \gamma^{(*)} \gamma^{(*)}$$

 Así mismo, trabajamos en transiciones incluyendo resonancias vectoriales neutras¹⁷

$$V^0
ightarrow P^0 \gamma^{(*)}$$

 Con lo anterior, estamos buscando reducir la incertidumbre en los parámetros de RχT e introducirlos posteriormente en el cálculo de la a^{HLbL}_μ.

¹⁶R. Escribano y S. Gonzàlez-Solís, arXiv:1511.04916 [hep-ph]

¹⁷C. Terschlüsen and S. Leupold, Phys. Lett. B691 (2010) → < = > < = >

Conclusiones

- Encontramos una contribución al a_{μ}^{HLbL} consistente con mejor precisión y consistente con otros modelos teóricos.
- Encontramos que la aproximación del polo del pión subestima el factor de transición en un 14%, en acuerdo con trabajos anteriores¹⁸.
- Obtuvimos la primera predicción para el observable $\sigma(e^+e^- \rightarrow \mu^+\mu^-\pi^0)$, que podrá ser medido en KLOE-2. También para η y η' en los experimentos de Novosibirsk.
- Se puede reducir aún más la incertidumbre mejorando la determinación de parámetros, como se está haciendo en el trabajo en progreso.

¹⁸F. Jegerlehner and A. Nyffeler, Physics Reports 477 (2009)

Propósito

au

Factores de forma

Resultados

Conclusiones

Back up

Anomalous magnetic moment a_ℓ

 However, from hyperfine splitting of the ground state of hydrogen and deuterium in 1947, Nafe *et al.* measured¹⁹

 $\delta \mu / \mu = 0.00126 \pm 0.00019$

 Which came to be consistent with Schwinger's²⁰ prediction of a deviation from g = 2, defined as the anomalous magnetic moment a_μ.

$$\mathbf{a}_{\ell} := \frac{\mathbf{g}_{\ell}-2}{2} = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2).$$

¹⁹ J. E. Nafe *e*t al., Phys.Rev. 71 (1947)
 ²⁰ J. S. Schwinger, Phys.Rev. 73 (1948)

Adolfo Guevara

メロト スピト メヨト メヨト

Why $\ell = \mu$?

- Ever since, there has been more precise measurements and computations of the a_{ℓ} , making it feasible to search for physics Beyond Standard Model (BSM) in a_{ℓ} .
- On other hand, angular momentum conservation shows that in $\ell \rightarrow \gamma \ell$ processes, ℓ must flip its spin. Only for massive particles, spin flips are allowed \Rightarrow the amplitude must be proportional to the mass m_{ℓ} .
- Therefore, contributions Beyond Standard Model (BSM) to the a_{ℓ} , like chiral d=5 operator $\frac{g}{\Lambda} \bar{\psi} \sigma^{\mu\nu} F_{\mu\nu} \psi$ must be suppressed by a factor $\sim \frac{gm_{\ell}}{\Lambda^2}$.
- If current discrepancy is from BSM contribution to a_{μ} ,

 $\Lambda \approx \sqrt{g}$ 100 TeV

Adolfo Guevara

Resultados

Conclusiones

Why not $\ell = \tau$?

- Since transition probability is squared modulus of the amplitude, BSM effects will be easier to detect with $\ell=\mu$

$$\left(rac{m_\mu}{m_e}
ight)^2\sim4 imes10^4$$

• Therefore, BSM effects should be larger on a_{τ} . Nevertheless, τ_{τ} is so small that experimental results²¹ are still compatible with $a_{\tau} = 0$.

$$au_{\mu} = 2.197 imes 10^{-6} s, \ \ au_{ au} = 2.906 imes 10^{-13} s \ \ \Rightarrow \ \ rac{ au_{ au}}{ au_{\mu}} \sim 10^{-7}$$

²¹K. Ackerstaff *et al.*, [OPAL Collab.] Phys.Lett.B431(1998)
M. Acciarri *et al.*, [L3 Collab.] Phys.Lett.B434(1998)
W. Lohmann, Nucl.Phys.B144(2005)

Adolfo Guevara

• Even though measurements of a_e are 2250 times more precise²² a_μ is

$$\frac{1}{2250} \left(\frac{m_{\mu}}{m_e}\right)^2 \sim 19$$

times more sensitive to BSM contributions.

 Therefore, it would be more plausible to find such a deviation in the a_μ.

<□> <□> <□> <□> < □> < □>

Adolfo Guevara

²²R.S. Van Dyck *et al.*, PRL59(1987);
 P.J. Mohr *et al.*, Rev.Mod.Phys.72(2000)

Contributions to a_{μ}

• The computation of a_{μ} can be splitted in different contributions, whose values can be found in PDG²³

$$a_{\mu}=a_{\mu}^{QED}+a_{\mu}^{EW}+a_{\mu}^{Had}$$

• a_{μ}^{QED} are all corrections²⁴ that might come from QED

$$a_{\mu}^{QED} = 116584718.95(0.08) imes 10^{-11} + \mathcal{O}\left(rac{lpha}{\pi}
ight)^6$$

²³K.A. Olive *et al.* (Particle Data Group), Chin.Phys.C38(2014)
 ²⁴T. Aoyama *et al.* PRL 109(2012)

Adolfo Guevara

 a_{μ}^{EW}

• a_{μ}^{EW} are Electroweak contribution that are not a_{μ}^{QED} (W^{\pm}, Z, H) at two loops²⁵. Three loops contribution is negligible ($\lesssim 0.4 \times 10^{-11}$).

$$a_{\mu}^{EW} = 153.6(1.0) imes 10^{-11}$$

²⁵C. Gnendiger et al., Phys.Rev.D88 (2013)

Adolfo Guevara

Hadronic contributions

• a_{μ}^{Had} can be separated into two contributions, the PDG values are the following.²⁶

²⁶K.A. Olive *et al.*, (Particle Data Group), Chin. Phys.C38(2014) For HVP, M. Davier *et al.* Eur.Phys.J. C71 (2011) For HLbL J. Prades *et al.* Advanced series on directions in HEP Vol20.

Hadronic contributions to a_{μ}

• All the contributions and their uncertainties are shown in the next table.

Contribution	$ imes 10^{11}$	Uncertainty $ imes 10^{11}$
QED	116 584 718.95	0.08
EW	153.6	1.0
Had	7 028	(42) _{Vac. Pol.} (26) _{Light-by-Light}
Total	116 591 803	(1)(42)(26)
Exp	116 592 091	(54)(33)

- Clearly, the largest uncertainty comes from the hadronic contribution.
- With these values there is a discrepancy

$$a_{\mu}^{exp}-a_{\mu}^{SM}=288(63)(49) imes 10^{-11}~~\sim 3.5\sigma$$

Adolfo Guevara
 Adol

• And our off-shell result with other works

- Including η y η^\prime , parametrized consistently with $1/\textit{N}_\textit{C}$ small

$$diag(U) = \left(\frac{\pi^0 + C_q \eta + C_{q'} \eta'}{\sqrt{2}}, \frac{-\pi^0 + C_q \eta + C_{q'} \eta'}{\sqrt{2}}, -C_s \eta + C_{s'} \eta'\right)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 めんの

Adolfo Guevara

• Therefore, the Form Factors change only by a factor.

$$F_{\eta^{(\prime)}\gamma\gamma}(p^2,q^2,r^2) = \left(\frac{5}{3}C_{q^{(\prime)}} \mp \frac{\sqrt{2}}{3}C_{s^{(\prime)}}\right)F_{\pi\gamma\gamma}(p^2,q^2,r^2)$$

Propósito

aμ

Conclusiones

η y η'

- So we get the following prediction $^{\rm 27}$ for η

Propósito

aμ

 η y η'

• and 28 for η'

• Now we can compare our results with earlier results.

$a_{\mu}^{HLbL} \cdot 10^{10}$	Contribution
11.6 ± 4.0	F. Jegerlehner and A. Nyffeler Phys.Rep 477(2009)
10.5 ± 2.6	Prades, De Rafael and Vainshtein ²⁹
	Advanced series on directions in high energy physics. Vol. 20
11.8 ± 2.0	Our contribution

²⁹Prades *et al.* only include the *charm* loop in the heavy quark loop evaluation.

Proposal of new observable

- This new observable would give complementary information about π TFF for using it directly in a_{μ}^{HLbL} calculation.
- Taking into account the factors for $\eta^{(\prime)}$, an analogous observable can be obtained for these particles too.
- With $d\sigma/ds_1$ information about P2, P3, $C_{q^{(\prime)}}$ and $C_{s^{(\prime)}}$ could be measured to improve even more the theoretical prediction of a_{μ}^{HLbL} .

Resultados

Conclusiones

a_{μ} in different frameworks

$a_\mu^{\pi^0 LbL} \cdot 10^{10}$	Model and Reference
5.58 ± 0.05	Nambu-Jona-Lasinio extended (Bijnens et al. 1995)
5.56 ± 0.01	VMD (Hayakawa et al. 1995)
5.8 ± 1.0	Large N_C 2 vector meson π -pole (Knecht and Nyffeler 2002)
7.2 ± 1.2	π exchange (Jegerlehner and Nyffeler 2009)
$\textbf{6.54} \pm \textbf{0.25}$	Holographic QCD (Cappiello et al. 2011)
6.58 ± 0.12	A pseudoscalar and a vector meson (Kampf, Novotny 2011)
$\textbf{6.49} \pm \textbf{0.56}$	Rational aproximants (Masjuan and Vanderhaeghen 2012)
5.0 ± 0.4	Non-local Chiral Quark model (Dorokhov et al 2012)
5.75 ± 0.06	our result with real π
6.66 ± 0.21	Our result (2014)

Resonance Chiral Theory $R\chi T$

- The relevant degrees of freedom are³⁰ the octet of the lightest pseudoscalar (π , K, η and η').
- The expansion parameter in this theory is $1/N_c$, and in large N_c the $U(1)_A$ broken symmetry is restored, that is the reason for taking η' at the same level as the other resonances.

³⁰G. Ecker, J. Gasser A. Pich y E. De Rafael Nucl.Phys. B321(1989) => = ⇒ ∞ ∞ Adolfo Guevara Propósito

an

Resultados

Conclusiones

$R\chi T$

• Thus, being $U(3)_V$ the underlying symmetry, the interaction terms between resonances, external currents and $\{\pi, K, \eta, \eta'\}$ are

$$\mathcal{L}^{V} = \frac{F_{V}}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + i \frac{G_{V}}{\sqrt{2}} \langle V_{\mu\nu} u^{\mu} u^{\nu} \rangle$$

$$\mathcal{L}_{VJP} = \sum_{i}^{7} \frac{c_{i}}{M_{V}} \mathcal{O}_{VJP}^{i}; \qquad \mathcal{L}_{VVP} = \sum_{i}^{4} \frac{d_{i}}{M_{V}} \mathcal{O}_{VVP}^{i}$$

• These are examples of such operators³¹

$$\mathcal{O}_{VJP}^{2} = \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\alpha}, f_{+}^{\rho\sigma}\} \nabla_{\alpha} u^{\nu} \rangle$$
$$\mathcal{O}_{VVP}^{1} = \varepsilon_{\mu\nu\rho\sigma} \langle \{V^{\mu\nu}, V^{\rho\alpha}\} \nabla_{\alpha} u^{\sigma} \rangle$$

Resultados

Conclusiones

$F_{\pi\gamma\gamma}$ parameters

- R χ T parameters can be found using short distance behavior of QCD, which predicts an asymptotic behavior of s^{-1} for this process.
- Thus, short distance relationships³² ensure a convergent behavior

$$d_3 = -\frac{N_C M_V^2}{64\pi^2 F_V^2} + \frac{F^2}{8F_V^2} - \frac{4\sqrt{2}P_2}{F_V}; \qquad c_{125} = 0; \qquad d_{123} = \frac{1}{24};$$

$$F_V = \sqrt{3}F;$$
 $c_{125} = 0;$ $c_{1256} = -\frac{N_C M_V}{32\sqrt{2}\pi^2 F_V}$

³²J. Sanz-Cillero and P. Roig, Phys.Rev.Lett.B733(2014) COMPARISON Adolfo Guevara

• Within t'Hooft's large N_C , the anomaly term is suppressed by a factor $1/N_C$ with respecto to the rest of the QCD lagrangian

$$\frac{g^2}{8\pi^2}\frac{\theta}{N_C}\,TrF^{\mu\nu}\tilde{F}_{\mu\nu},$$

• Therefore in the limit $N_C \to \infty$ the $U(1)_A$ symmetry is restored.

Conclusiones

Wess-Zumino-Witten

 A fundamental part of the analysis is the WZW term, wich is order p⁴ in the chiral counting and describe intrinsic odd interactions ³³.

$$Z[U, I, r] = -\frac{iN_{C}}{240\pi^{2}} \int_{M^{5}} d^{5}x \varepsilon^{ijklm} \langle \Sigma_{i}^{L} \Sigma_{j}^{L} \Sigma_{k}^{L} \Sigma_{l}^{L} \Sigma_{m}^{L} \rangle$$

$$-\frac{iN_{C}}{48\pi^{2}} \int d^{4}x \varepsilon_{\mu\nu\rho\sigma} (W(U, I, r)^{\mu\nu\rho\sigma} - W(\mathbf{1}, I, r)^{\mu\nu\rho\sigma})$$

$$W(U, I, r)_{\mu\nu\rho\sigma} = \langle U\ell_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma} + \frac{1}{4}U\ell_{\mu}U^{\dagger}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} + iU\partial_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma}$$

$$+ i\partial_{\mu}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}U^{\dagger}\partial_{\nu}r_{\rho}U\ell_{\sigma}$$

$$- \Sigma_{\mu}^{L}\Sigma_{\nu}^{L}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}\ell_{\nu}\partial_{\rho}\ell_{\sigma} + \Sigma_{\mu}^{L}\partial_{\nu}\ell_{\rho}\ell_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}\ell_{\rho}\ell_{\sigma}$$

$$+ \frac{1}{2}\Sigma_{\mu}^{L}\ell_{\nu}\Sigma_{\rho}^{L}\ell_{\sigma} - i\Sigma_{\mu}^{L}\Sigma_{\nu}^{L}\Sigma_{\rho}^{L}\ell_{\sigma} - (L \leftrightarrow R)\rangle,$$

$$\Sigma_{\mu}^{L} = U^{\dagger}\partial_{\mu}U, \Sigma_{\mu}^{R} = U\partial_{\mu}U^{\dagger},$$
³³J. Wess and B. Zumino Phys.Lett.37B(1971)

E. Witten, Nucl. Phys. B223 (1983)

イロト イヨト イヨト イヨト 三日

Adolfo Guevara

Contribución de resonancias a las LEC de χ PT a $\mathcal{O}(p^4)$

• El lagrangiano de interacción de las resonancias vectoriales es

$$\mathcal{L}(V) = \langle V_{\mu\nu} J^{\mu\nu} \rangle; \qquad J^{\mu\nu} = \frac{F_V}{2\sqrt{2}} f^{\mu\nu}_+ + i \frac{G_V}{2\sqrt{2}} [u^\mu, u^\nu]$$

• Con
$$f^{\mu}\nu_{\pm} = uF_{L}^{\mu\nu}u^{\dagger} \pm u^{\dagger}F_{R}^{\mu\nu}u$$
, donde

$$F_{R,L}^{\mu\nu} = \partial^{\mu}(r,\ell)^{\nu} - \partial^{\nu}(r,\ell)^{\mu} - i\left[(r,\ell)^{\mu},(r,\ell)^{\nu}\right]$$

 siendo r y ℓ las corrientes vectoriales y axiales externas, respectivamente.

• y
$$u^{\mu} = i \left[u^{\dagger} \left(\partial^{\mu} - ir^{\mu} \right) u - u \left(\partial^{\mu} - i\ell^{\mu} \right) u^{\dagger} \right] = i u^{\dagger} D_{\mu} U u^{\dagger}$$

• *F_V* y *G_V* son parámetros reales.

• Así, se encuentra que V debe cumplir una ecuación de constricción

$$abla^lpha
abla_
ho V^{lpha eta} -
abla^eta
abla_
ho V^{
ho lpha} + M_V^2 V^{lpha eta} = -2 J^{lpha eta}$$

• Donde $abla_{\mu}R = \partial_{\mu}R + [\Gamma_{\alpha}, R]$ y

$$\Gamma_{\alpha} = \frac{1}{2} [u^{\dagger} (\partial_{\alpha} - ir_{\alpha})u + u(\partial_{\alpha} - i\ell_{\alpha})u^{\dagger}].$$

Al sustituir V y a órden p^4 se tiene que

$$L_1^V = \frac{G_V^2}{8M_V^2} \qquad L_2^V = 2L_1^V \qquad L_3^V = -6L_1^V$$

$$L_9^V = \frac{F_V G_V}{2M_V^2} \qquad L_{10}^V = -\frac{F_V^2}{4M_V^2}$$

• y de igual forma para las demás resonancias.

Adolfo Guevara