Reunión Anual de la División de Partículas y Campos Sociedad Mexicana de Física

Efectos de Nueva física en el autoacoplamiento hhh inducido por fermiones espejos del MHP+T

Dr. Agustín Moyotl Acuahuitl, Dr. Miguel Ángel Pérez Angón Departamento de Física, CINVESTAV

BUAP, 23 de mayo de 2016

- 1.- Introduction.
- 2.- Higgs physics
- 3.- hhh at one loop level in SM
- 4.- Littlest Higgs Model with T-parity
- 5.- hhh at one loop in LHM with T-parity
- 7.- Conclusions

INTRODUCTION

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC $\stackrel{\text{\tiny{$\Xi$}}}{\approx}$

CMS Collaboration*

Η

CERN. Observation of a new particle in the search for the Standard Model Higgs boson $\frac{This}{CONTT}$ with the ATLAS detector at the LHC $\stackrel{\text{\tiny{fig}}}{\sim}$

1		
	This paper is dedic $\sqrt{s} = 7$ TeV	/ in 2011 and 5.8 fb ⁻¹ at $\sqrt{s} = 8$ TeV in 2012.
AR	contributions to th	1
Article Receiv Receiv Accept Availa Editor Keywo CMS Physic Higgs	ARTICLE INFO	ABSTRACT
	Article history: Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: WD. Schlatter	A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb ⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb ⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow ev\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fuctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model Higgs boson.
2 5 5 5 5 5	Description As Bank Trames a Defease, Barclays Labor Rectarge but rectarge and bars	mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV
$\rightarrow ZZ^{(*)} \rightarrow 4\ell, H \rightarrow \gamma\gamma$ and $H \rightarrow WW^{(*)} \rightarrow e\nu\mu\nu$		
	m Surveyling, N.Y., smalled m Top Judge Helped deided is wrap their for small deided in wrap their for small deided in wrap their for small deided in wrap their for small deided for surveyling with the formation formation would be added for survey in the formation of the second formation would be added for survey in the formation of the second formation would be added for survey in the formation of the second formation would be added for survey in the formation of the second formation would be added for survey for the formation of the second formation would be added for survey for the formation of the second formation would be added for the second formation would be	rom insight comes inspiration.

RADPyC, BUAP, Puebla, Pue., 23-25 may 2016

DPC-SI

Higgs Decay modes at LHC

Direct measurement

 $h^0 \to ZZ^* \to 4\ell$ ATLAS, Phys.Lett. B 716, 1 (2012) $m_h = 126.0 \pm 0.4 \pm 0.4 GeV$ $\begin{array}{c|c} h^0 \to \gamma \gamma^* & \to 4 \ell \end{array} \begin{array}{c} \text{ATLAS, Phys.Rev.D 90, 052004 (2014)} & m_h = 125.36 \pm 0.41 GeV \\ \text{CMS, Phys.Rev.Lett. 114 191803 (2015)} & m_h = 125.09 \pm 0.21 \pm 0.11 GeV \end{array}$ $h^0 \to WW^* \to V\ell V\ell$ CMS, Phys.Lett.B 716, 30 (2012) $m_h = 125.3 \pm 0.4 \pm 0.5 GeV$ $\ell = e, \mu$ $h^0 \rightarrow \tau \tau, \frac{\tau \rightarrow \ell v \overline{v}}{\tau \rightarrow had. + \overline{v}}$ CMS, Nature Phys. 10 557 (2014) $m_h = 125 GeV$ ATLAS, JHEP 1504, 117 (2015) $m_h = 125.36 GeV$ TLAS, JHEP **1501**, 069 (2015) *m* =125.36*GeV* $h^0 \rightarrow$

$$b\overline{b}$$
 ATLAS, JHEP **1501**, 069 (2015) $m_h = 125.36 Ge$
CMS. Phys.Rev.D 92 032008 (2015) $m_h = 125 GeV$

Upper bound

 $h^0 \rightarrow \mu \mu$ $h^0 \rightarrow \mu\mu(ee)$ $h^0 \to Z\gamma \quad Z \to \ell\ell$

ATLAS, Phys.Lett.B 738, 68 (2014) $m_h = 125 GeV$ CMS, Phys.Rev.D 92 032008 (2015) $m_h = 120 - 150 GeV$ ATLAS, Phys.Lett.B 732, 8 (2014) $m_h = 120 - 150 GeV$

CMS, Phys.Lett.B 753 341 (2016) $m_h = 125 GeV$

HIGGS PHYSICS

Higgs Decay modes at LHC

RADPyC, BUAP, Puebla, Pue., 23-25 may 2016

HIGGS PHYSICS

Higgs Decay modes at LHC

"Τηε δατα αρε φουνδ το βε χομπατιβλε ωιτη τηε Στανδαρδ Μοδελ εξπεχτατιονσ φορ α Ηιγγσ βοσον ατ α μασσ οφ 125.36 Γες... Τογετηερ τηεψ αχχουντ φορ αππροξιματελψ 88 % οφ αλλ δεχαψσ οφ α ΣΜ Ηιγγσ βοσον.ATLAS, Eur. Phys. J. C (2016) 76:6

Exploring electroweak symmetry breaking at the LHC.

"Σεαρχηεσ φορ βοτη ρεσοναντ ανδ νονρεσοναντ Ηιγγσ βοσον παιρ προδυχτιον... Νο επιδενχε οφ τηειρ " $\pi \rho_0 \delta_{UX} \pi_{UY} r_0 \sigma_0^{\beta} \sigma_0 \sigma_0^{m} \sigma_0^{\beta} \sigma_0^{\beta} \sigma_0^{m} \sigma_0^{\beta} \sigma_0^{\beta$

Higgs self-couplings

 $V(\Phi) = -\lambda v^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$ = $\lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4$

$$+ \begin{pmatrix} q \\ p_1 \rightleftharpoons p_2 \end{pmatrix} + \begin{pmatrix} q \rightleftharpoons p_1 \\ p_2 \end{pmatrix} + \begin{pmatrix} q \rightleftharpoons p_2 \\ p_1 \end{pmatrix} + \begin{pmatrix} q \rightleftharpoons p_2 \\ q \rightleftharpoons p_1 \end{pmatrix} + \begin{pmatrix} p_1 \rightleftharpoons p_2 \\ q \rightleftharpoons p_1 \end{pmatrix} + \begin{pmatrix} p_1 \rightleftharpoons p_2 \\ q \rightleftharpoons p_2 \end{pmatrix}$$
$$= \Gamma_{h^*h^*h^*}(q^2, p_1^2, p_2^2) = \frac{3m_h^2}{v}\lambda_{hhh}$$
 Here $\lambda_{\eta\eta\eta}$ is the correction to self-coupling hhh.

DPC-SMF

RADPyC, BUAP, Puebla, Pue., 23-25 may 2016

RADPyC, BUAP, Puebla, Pue., 23-25 may 2016

1.- Little higgs models are based on a collective symmetry breaking pattern.

(Global) $SU(5) \xrightarrow{f \sim O(TeV)} SO(5)$ (Gauged) $[SU(2)_1 \otimes U(1)_1] \otimes [SU(2)_2 \otimes U(1)_2] \xrightarrow{V_{SM}} SU(2) \otimes U(1) \xrightarrow{V_{SM}} U(1)_{EM}$

2.- There are 14 Goldstone bosons, and are parametrized by a nonlinear sigma model.

3.- After the first symmetry breaking there are four heavy gauge boson: Z_H , A_H , W_H^{\pm} .

4.- After the second symmetry breaking we have the SM fields, and seven additional scalars fields.

5.- The LHM had an alternative to hierarchy problem.

6.- The heavy photon is a dark matter candidate. Phys. Rev. D 88, 075018 (2013)

7.- A natural way to define the action of T-parity on the gauge fields is: $W^a \leftrightarrow W^a = B^a \leftrightarrow B^a$

 $W_{1\mu}^a \leftrightarrow W_{2\mu}^a \quad B_{1\mu}^a \leftrightarrow B_{2\mu}^a$

8.- The constraints from Higgs couplings results from the 8 TeV run at the LHC ... exclude *f* up to 694 GeV. *JHEP02* (2014) 053

Mirror fermions

1.- Little higgs models are based on a collective symmetry breaking pattern.

(Global)
$$SU(5) \xrightarrow{f \sim O(TeV)} SO(5)$$

(Gauged) $[SU(2)_1 \otimes U(1)_1] \otimes [SU(2)_2 \otimes U(1)_2] \xrightarrow{V_{SM}} SU(2) \otimes U(1) \xrightarrow{V_{SM}} U(1)_{EM}$

For each SM SU(2)_L fermion doublet, a fermion doublet under SU(2)₁ another under SU(2)₂ are introduced. The T-parity even linear combination is associated with the SM, while the T-odd combination is given a mass of order the scale *f*.

The mirror fermion acquire mass through the SU(5) and T invariant Yukawa interaction. \mathcal{L}_{n}

$$\mathcal{L}_{mirror} = -\kappa_{ii} f(\overline{\Psi}_{2}^{i}\xi + \overline{\Psi}_{1}^{i}\Sigma_{0}\Omega\xi^{\dagger}\Omega)\Psi_{R}^{i}$$

Then the masses and the Higgs coupling for the u mirror quark and the mirror neutrino are. d_{μ} and l_{μ} do not have direct

$$m_{\ell_{H}} = m_{d_{H}} = \sqrt{2\kappa_{ii}} f$$
$$m_{\nu_{H}} = m_{u_{H}} = \sqrt{2\kappa_{ii}} f \left(1 - \frac{\nu^{2}}{8f^{2}}\right)$$

 d_H and l_H do not have direct couplings with the Higgs boson.

$$h\overline{u}_{H}u_{H} \sim h\overline{v}_{H}v_{H} \sim \frac{i\kappa_{ii}}{2\sqrt{2}}\left(\frac{v}{f}\right)$$

RADPyC, BUAP, Puebla, Pue., 23-25 may 2016

1.- To test the electroweak symmetry breaking sector of the SM, not only should the couplings of the Higgs boson to gauge boson and fermions be measured, but also the self-couplings of the Higgs boson.

2.- In the SM, the one-loop contribution to self-couplings hhh is $\approx 11\%$, where the top quark contribution is $\approx 9.14\%$

3.- In the LHM+T, the one-loop contribution of mirror fermions to self-coupling hhh is $\approx 2.3 \times 10^{-2}$ for f=700 GeV.

