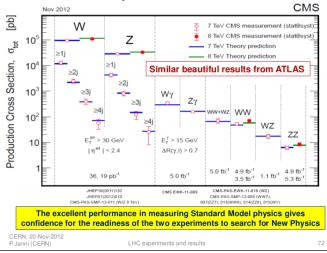
The 750 GeV Resonance at LHC13: fact or mistery?

J. Lorenzo Diaz-Cruz FCFM-BUAP (Mexico)

Talk at ICN/IFUNAM (Mexico, 2016)

May 25, 2016

(BUAP)


The 750 GeV Resonance at LHC

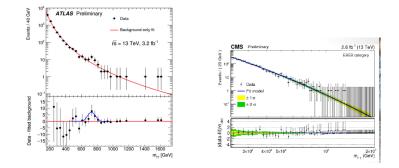
May 25, 2016

1 The winter of our "discontent": L Diaz

- 2 Profile of the suspected 750 Resonance (Isabel Pedraza)
- 3 Theory I: Weakly interacting vs Strogly Interacting (Saul Ramos)
- Theory II : Higgs-Flavon mixing (Azucena Bolanos)
- **5** Conclusions.

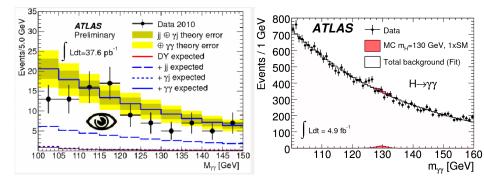
To the SM domain

A summary of Standard Model measurements


(BUAP)

May 25, 2016

< ロト (同) (三) (三)


And now a 750 GeV resonance shows up at LHC13?

A possible new particle with mass $m_X = 750$ GeV has been reported both by CMS and ATLAS from run2 data (13 TeV) in the di-photon channel:

With 3.2 fb^1 ATLAS: 3.6σ (local) $\rightarrow 2.3\sigma$ (after LEE), With 2.6 fb^1 CMS: 2.6σ (local) $\rightarrow 2.0\sigma$ (after LEE),

New physics or a statistical fluctuation?

(Not to mention a 145 GeV Higgs signal from Atlas too)

May 25, 2016 5 / 42

Summary of 750 GeV resonance data 1

- ATLAS excess of about 14 events (with selection efficiency 0.4) appear in at least two energy bins, suggesting a width of about 45 GeV (i.e. $\Gamma/M \simeq 0.06$),
- For CMS best fit has a narrow width, while assuming a large width ($\Gamma/M \simeq 0.06$), decreases the significance, which corresponds to a cross section of about 6 fb.
- The anomalous events are not accompanied by significant missing energy, nor leptons or jets. No resonances at invariant mass 750 GeV are seen in the new data in ZZ, W+ W-, or jj events.
- No $\gamma\gamma$ resonances were seen in Run 1 data at s = 8 TeV, altought both CMS and ATLAS data showed a mild upward fluctuation at $m_{\gamma\gamma} = 750$ GeV.
- The data at s = 8 and 13 TeV are compatible at 2σ if the signal cross section grows by at least a factor of 5.

¹ Giudice et al, arXive:	1512.05332 [hep-ph]		≣ • ૧
(BUAP)	The 750 GeV Resonance at LHC	May 25, 2016	6 / 42

Production of S resonance at LHC

Resonant process $pp \to S \to \gamma \gamma$:

$$\sigma(pp \to S \to \gamma\gamma) = \frac{2J+1}{Ms\Gamma} [C_{gg}\Gamma(S \to gg) + C_{qq}\Gamma(S \to qq)]\Gamma(S \to \gamma\gamma)$$

- S is a new uncoloured boson with mass M, spin J, and total width Γ , coupled to partons in the proton, with proton c.of.m. energy s,
- Resonance S could be an scalar (spin=0) or tensor (spin=2),
- For a spin-0 resonance produced from gluon fusion and decays into two photons, the signal rate is reproduced for $\frac{\Gamma_{\gamma\gamma}\Gamma_{gg}}{MM}\simeq 1.1\times 10^{-6}\frac{\Gamma}{M}\simeq 6\times 10^{-8} \ ,$
- When resonance S is produced from bottom quark annihilation, the signal is reproduced for $\frac{\Gamma_{\gamma\gamma}\Gamma_{bb}}{MM} \simeq 1.9 \times 10^{-4} \frac{\Gamma}{M} \simeq 1.1 \times 10^{-5} ,$

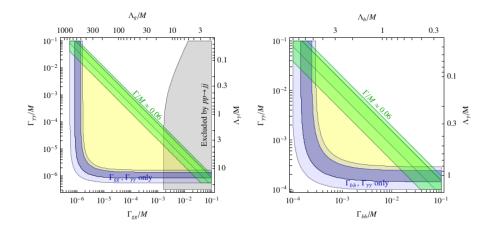
May 25, 2016

A quick profile of the 750 resonance

Assume the new particle S couples with photons, gluons and heavy quarks through the effective lagrangian:

$$\mathcal{L} = g_s^2 (\frac{S}{2\Lambda_g} G^{a\mu\nu} G^a_{\mu\nu} + d.t.) + e^2 (\frac{S}{2\Lambda_\gamma} F^{\mu\nu} F_{\mu\nu} + d.t.) + \frac{S}{\Lambda_b} Q_L^3 H D_R^3$$
(1)

Then:


$$\begin{split} \Gamma(S \to gg) &= \pi \alpha^2 M(\frac{M^2}{\Lambda_{\gamma}} + d.t.) \\ \Gamma(S \to \gamma\gamma) &= 8\pi \alpha_s^{-2} M(\frac{M^2}{\Lambda_g} + d.t.) \\ \Gamma(S \to bb) &= \frac{3M}{8\pi} (\frac{v^2}{\Lambda_b}) \end{split}$$

May 25, 2016

∃ ≥ >

< 47 ▶

A quick profile of the 750 resonance

(BUAP)

The 750 GeV Resonance at LHC

May 25, 2016

< 177 ▶

< ∃⇒

9 / 42

In the old days New Physics came in two types:

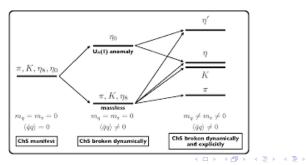
• Weakly interacting: $\lambda \simeq g_i \rightarrow m_h \simeq m_Z$

(THDM, SUSY, LR models, Gut's, etc)

• Strongly interacting: $\lambda >> g_i \rightarrow m_h >> m_Z$

(Technicolor, Walking Technicolor, Topcolor, Composite Higgs, PGB Higgs...)

Then, Extra Dimensions came into the game and things got mixed...


・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

Strongly interacting spectrum

MESONES = qq	quarks	carga eléctrica	masa (GeV/c²)	spin
π^* pion	иd	+ 1	0.140	0
κ ⁻ kaon	sū	- 1	0.494	0
κ° kaon	ds	0	0.498	0
o ⁺ rho	иđ	0	0.770	1
Ľт р	сđ	+ 1	1.869	0
η, ^{eta-c}	сē	0	2.980	0

<u>Mesones</u>

(BUAP)

The 750 GeV Resonance at LHC

May 25, 2016

11 / 42

ъ

- General Approach / Effective Lagrangian,
- Multi-particle models (2HDM, SUSY, extra fermions, LR, etc),
- Composite Higgs models,
- Exotics (Axions, KK gravitons, dilaton, low unification, etc)

< ∃⇒

General Approach / Effective Lagrangian

A. Djouadi, J. Ellis, R. Godbole and J. Quevillon, "Future Collider Signatures of the Possible 750 GeV State," arXiv:1601.03696 [hep-ph]. J.H. Davis, M. Fairbairn, J. Heal and P. Tunney, "The Significance of the 750 GeV Fluctuation in the ATLAS Run 2 Diphoton Data," arXiv:1601.03153 [hep-ph]. M. Fabbrichesi and A.Urbano, "The breaking of the $SU(2)_L \times U(1)_Y$ symmetry: The 750 GeV resonance at the LHC and perturbative unitarity," arXiv:1601.02447 [hep-ph].

.....

R.S.Gupta, S.Jager, Y.Kats, G.Perez and E.Stamou, "Interpreting a 750 GeV Diphoton Resonance," arXiv:1512.05332 [hep-ph]. [134 citas] J.Ellis, S.A.R. Ellis, J.Quevillon, V.Sanz and T.You, "On the Interpretation of a Possible ~ 750 GeV Particle Decaying into $\gamma\gamma$," arXiv:1512.05327 [hep-ph]. [135 citas] R.Franceschini *et al.*, "What is the gamma gamma resonance at 750 GeV?," arXiv:1512.04933 [hep-ph]. [158 citas]

< ロト (同) (三) (三)

э

Multi-particle models (2HDM, SUSY, extra fermions, LR, etc),

Bertuzzo, P. Machado and M.Taoso, "Di-Photon excess in the 2HDM: hasting towards the instability and the non-perturbative regime," arXiv:1601.07508 [hep-ph]. T.Nomura and H.Okada, "Generalized Zee-Babu model with 750 GeV Diphoton Resonance," arXiv:1601.07339 [hep-ph]. J. Kawamura and Y. Omura, "Diphoton excess at 750 GeV and LHC constraints in models with vector-like particles," arXiv:1601.07396 [hep-ph], S.F. King and R.Nevzorov, "750 GeV Diphoton Resonance from Singlets in an Exceptional Supersymmetric Standard Model," arXiv:1601.07242 [hep-ph]. C.W.Chiang and A.L.Kuo,"750-GeV Diphoton Resonance as the Singlet of Custodial Higgs Triplet Model," arXiv:1601.06394 [hep-ph]. Q.H.Cao, Y.Q.Gong, X.Wang, B.Yan and L.L.Yang,"One Bump or Two Peaks? The 750 GeV Diphoton Excess and Dark Matter with a Complex Mediator," arXiv:1601.06374 [hep-ph]. H. Okada and K. Yagyu, "Renormalizable Model for Neutrino Mass, Dark Matter, Muon q-2 and 750 GeV Diphoton Excess," arXiv:1601.05038 [hep-ph]. X.F. Han, L. Wang and J.M. Yang, "An extension of two-Higgs-doublet model and the excesses of 750 GeV diphoton, muon g-2 and $h \to \mu \tau$," arXiv:1601.04954 [hep-ph]. W. Chao, "The Diphoton Excess Inspired Electroweak Baryogenesis," arXiv:1601.04678 [hep-ph] T. Nomura and H. Okada, "Four-loop Radiative Seesaw Model with 750 GeV Diphoton Resonance," arXiv:1601.04516 [hep-ph]. A.E. Faraggi and J.Rizos, "The 750 GeV diphoton LHC excess and Extra Z's in Heterotic-String Derived Models," arXiv:1601.03604 [hep-ph]. I. Dorsner, S. Fajfer and N. Kosnik, "Is symmetry breaking of SU(5) theory responsible for the diphoton excess?," arXiv:1601.03267 [hep-ph]. C. Hati, "Explaining the diphoton excess in Alternative Left-Right Symmetric Model," arXiv:1601.02457 [hep-ph].

(日) (四) (日) (日) (日)

э

Composite Higgs models,

D.B.Franzosi and M.T.Frandsen, "Symmetries and composite dynamics for the 750 GeV diphoton excess," arXiv:1601.05357 [hep-ph].

• • • • •

R.Franceschini *et al.*, "What is the gamma gamma resonance at 750 GeV?," arXiv:1512.04933 [hep-ph]. [158 citas]

Exotics (Axions, KK gravitons, dilaton, low unification, etc)

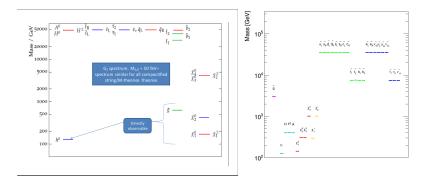
Ben-Dayan and R. Brustein, "Hypercharge Axion and the Diphoton 750 GeV Resonance," arXiv:1601.07564 [hep-ph]. C.Q.Geng and D. Huang, "Note on Spin-2 Particle Interpretation of the 750 GeV Diphoton Excess," arXiv:1601.07385 [hep-ph]. S. Abel and V. V. Khoze, "Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop," arXiv:1601.07167 [hep-ph].
U. Aydemir and T. Mandal, "Interpretation of the 750 GeV diphoton excess with colored scalars in SO(10) grand unification," arXiv:1601.06761 [hep-ph]. A.Martini, K.Mawatari and D.Sengupta, "Diphoton excess in phenomenological spin-2 resonance scenarios," arXiv:1601.0529 [hep-ph]. A.Ghoshal, "On Electroweak Phase Transition and Di-photon Excess with a 750 GeV Scalar Resonance," arXiv:1601.04291 [hep-ph]. J. H. Yu, "Hidden Gauged U(1) Model: Unifying Scotogenic Neutrino and Flavor Dark Matter," arXiv:1601.02609 [hep-ph].
M.Backovic, A.Martori, TarXiv:1512.04917

M.Backovic, A.Mariotti and D.Redigolo, "Di-photon excess illuminates Dark Matter," arXiv:1512.04917 [hep-ph]. [132 citas]

< ロト (同) (三) (三)

The 750 resonance in weakly coupled models

- Extended the SM by adding one (or more) scalar S and extra vector-like fermions Q f (or scalars) with mass M_f , hypercharge Y_f , charge Q_f and in the colour representation r_f , with the Yukawa coupling Y_f ,
- Then the partial widths should lie in the neighbourhood of $\Gamma(S \to \gamma \gamma)/M \simeq 10^{-6}$ and $\Gamma(S \to gg)/M \simeq 10^{-3} 10^{-6}$.
- Such widths can be easily achieved with with order one electric charges and conventional colour reps. For example, a heavy quark triplet with charge Q gives $\Gamma(S \to gg)/\Gamma(S \to \gamma\gamma) \simeq 36/Q^4$, which equals $\simeq 3000$ for Q = 1/3.
- Any ratio of $\Gamma(S \to gg)/\Gamma(S \to \gamma\gamma)$ can be obtained by including the appropriate content of heavy leptons and quarks with different masses.
- Q > 5/3 are strongly constrained by same-sign dilepton searches and the lower limit on their mass is of order 1 TeV, depending on Q.


The 750 resonance in weakly coupled models

- These weakly-coupled models can reproduce easily the event rates, however they face a challenge to reproduce the total width,
- The typical expression for a tree-level decay width is $\Gamma/M \simeq y^2/4\pi$; so the relatively large total width can be reproduced through a tree-level decay if the relevant coupling y is of order one (beyond pert.?).
- Other solution with many more states gets too barroque...
- one possibility; work within 2HDM $(\rightarrow h, H, A, H^+)$, then it is possible that $m_H \simeq m_A$, and the large width is because there are two particles being produced,
- The data can not be reproduced with the simplest 2HDM,
- The data can no be reproduced within the minimal MSSM, but it does in extensions with extra quarks or NMSSM,

・ロット 全部 マント・トロッ

э.

What about predictions for Heavy Higgses?

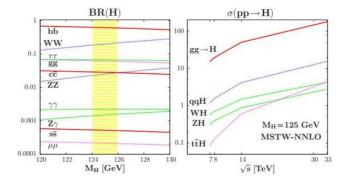
Heavy Higgses with $M \leq O(\text{TeV})$ were "predicted" in Slim SUSY (Diaz-Cruz et al)

(BUAP)

∃ ≥ >

BSM with Multi-Higgs models

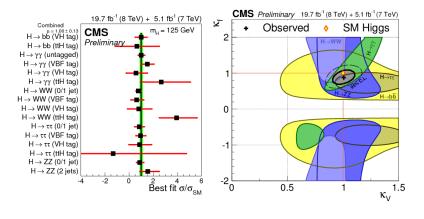
- The lack of understanding for the SM structure (Parameters, gauge unification, DM, BAU, etc) have motivated the search for extensions of the SM where such problems could be adressed,
- We know now that nature likes scalars, so may be more will be detected at LHC or future colliders,
- In particular, models with an extended Higgs sector have been studied considerably for several reasons (Hierarchy problem, SUSY, Composite Higgs, Flavor, DM)
- Here, we would like to explore model with extended Higgs sector that includes:
 - N active Higgs doublet
s+1 inert-type Higgs doublet +1 singlet of FN type
- And would like to see if such model can accomodate: LFV Higgs anomaly, Dark matter constraints and the heavy resonance with $m_h = 750$ GeV observed recently at LHC,


The answer is yes ... (see A. Bolanos talk)

(BUAP)

・ロット 全部 とう キャット

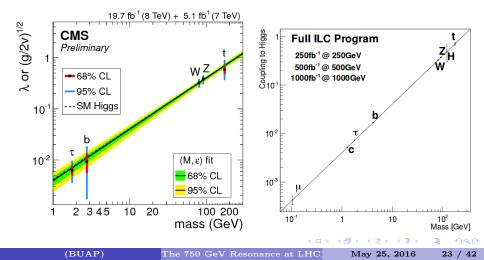
- 34


SM Higgs Decays and production

< ロト (同下 (ヨト (ヨト))

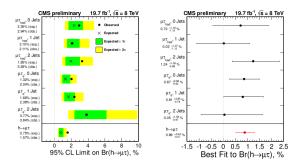
2

2.1 Higgs couplings from LHC


 $g_{hVV} = \kappa_V g_{hVV}^{sm}, \quad g_{hff} = \kappa_F g_{hff}^{sm},$

(BUAP)

(日) (四) (日) (日) (日)


The Higgs identity from LHC:

The couplings of the Higgs with particles, as a function of the mass, lays on a single line, which as been tested at LHC, i.e.

LFV Higgs decays

Very recently CMS (LHC) have found an small B.R. for LFV Higgs decay, with $B.R.(h \to \tau \mu) \simeq 10^{-2}$,

- LFV Higgs decays $h \rightarrow l_i l_j$ were first studied by Pilaftsis (PLB92),
- Diaz-Cruz and Toscano (PRD2000) focus on $h \to \tau \mu$ within eff. Lagr. , 2HDM (with $B.R.(h \to \tau \mu) \simeq 10^{-2} - 10^{-3}$),
- For SUSY (MSSM): $B.R.(h \to \tau \mu) \simeq 10^{-5}$ (Diaz-Cruz, JHEP2003),

24 / 42

A 3+1 Higgs doublets model with LFV, DM and 750 resonance

So, I want to build a model where:

- **1** up-, down- and lepton masses como from a different doublet,
- Flavor violation is allowed at consistent rates with FCNC phenomenology,
- 3 It includes a dark matter candidate (IDM),
- 0 And it also reproduce the 750 GeV resonance,

Could it be done? I think so....

Construction of a 3+1 Higgs doublets model

- To study possible deviations from the SM Higgs couplings, we shall work with a 3+1 Higgs doublet model
 (Φ₁, Φ₂, Φ₃ and Φ₀)
- The Higgs doublets only couple to one fermion type each, and thus do not induce FCNC,

 $\Phi_1 \rightarrow \text{up-}, \ \Phi_2 \rightarrow \text{down-} \ \text{and} \ \Phi_3 \rightarrow \text{l},$

- The model also includes one Froggart-Nielsen singlet (S), which works to reproduce the fermion masses and CKM,
- Through Higgs-Flavon mixing, it is possible to induce Flavor Violating interactions for the Higgs boson(s),
- Φ_0 is odd under a discrete symmetry, and therefore its lightest state is stable and a possible DM candidate,

・ロト ・西 ト ・ヨ ト ・ヨ ・ うらぐ

The FN Mechanism I

- Under Abelian Flavor symmetry $(U(1)_F)$, charges of LH-fermion doublet F_i , RH- fermion singlets f_j , and the Higgs doublets Φ_a , add to $n_{ij} \neq 0$, thus Yukawa couplings are forbidden,
- Flavon field S is assumed to have flavor charge equal to -1,
- Thus, Model includes non-renormalizable operators of the type:

$$\mathcal{L}_{eff} = \alpha^a_{ij} (\frac{S}{M_F})^{n_{ij}} \bar{F}_i f_j \tilde{\Phi}_a + h.c.$$
(2)

which is $U(1)_F$ -invariant.

- Then, Yukawa matrices arise after the spontaneous breaking of the flavor symmetry, i.e. with vev $\langle S \rangle = u$,
- The entries of Yukawa mattrices are given by $Y_{ij}^f \simeq \left(\frac{u}{M_F}\right)^{n_{ij}^f}$.
- The scale M_F represents the mass of heavy fields that transmit such symmetry breaking to the quarks and leptons.

ヘロト 人間ト ヘヨト ヘヨト

FN Mechanism- II

- Thus, the Yukawa matrices are given as: $Y_{ij}^f = \rho_{ij}^f (\lambda_F)^{n_{ij}^f}$,
- One fixes: $\lambda_F = \frac{u}{\sqrt{2}\Lambda_F} = \lambda \simeq 0.22$, which is of the order of the Cabibbo angle.
- For up-type quarks we shall consider abelian charges that give:

$$Y^{u} = \begin{pmatrix} \rho_{11}^{u} \lambda^{4} & \rho_{12}^{u} \lambda^{4} & \rho_{13}^{u} \lambda^{4} \\ \rho_{21}^{u} \lambda^{4} & \rho_{22}^{u} \lambda^{2} & \rho_{23}^{u} \lambda^{2} \\ \rho_{13}^{u} \lambda^{4} & \rho_{23}^{u} \lambda^{2} & \rho_{33}^{u} \end{pmatrix}$$
(3)

- Notice that $(Y^u)_{33}$ does not have a power of λ , i.e. FN mechanism does not explain top Yukawa (\rightarrow Yukawa-Gauge-Higgs unification?)
- This will imply that Flavon coupling with the top quark will be suppressed (in mass-eigen basis); coud be of order of charm-Higgs coupling or FV Higgs coupling *htc*,
- But $(Y^d)_{33}$ (and $(Y^l)_{33}$) could depend on λ ,

Higgs-Flavon Mixing

- The Flavon field is written in terms of vev, real and imaginary components, as:
 S = ¹/_{√2}(u + s₁ + is₂),
- Then, one expands powers of Flavon field to linear order, as follows:

$$\left(\frac{S}{\Lambda_F}\right)^{n_{ij}} = \lambda_F^{n_{ij}} \left(1 + \frac{n_{ij}}{u}(s_1 + is_2)\right) \tag{4}$$

• The Flavon interactions with fermions are described by the matrix:

$$Z_{ij}^f = \rho_{ij}^f n_{ij}^f (\lambda_F)^{n_{ij}^f} \tag{5}$$

• We still need to go to quark/lepton mass eigenstate basis, and take proper care of CKM matrix.

The scalar spectrum in a 3+1 Higgs doublets model

- For CPC HP 4 Real d. of f. \rightarrow 4 CP-even Higgs bosons,
- To go from weak to mass-eigenstates: $\phi_a^0 = O_{ab}^T h_b$ (a,b=1,4) $O_{ab} =$ diagonalizing matrix, it depends on form of Higgs potential,
- Imaginary components could be light, but let us focus on CP-even Higgs sector,
- Lightest state $(h_1) \simeq \text{SM}$ higgs boson, with $m_h \simeq 125 \text{ GeV}$,
- Three possibilities for the spectrum are:

(See S. Davidson et al, arXive:1512.08508 ; JM Yan et al, arXive: 1601.04954)

Conclusions.

- Mild evidence for new resonance with M = 750 GeV,
- Possible to interprete it with weakly coupled theories, but issue of large width remmains open,
- More narural to interprete it with strongly interacting theories,
- Another signal of new physics provided by $h \to \tau \mu$,
- Our (N+1)HDM seems promising to explain them all,

SM Higgs interactions

In the SM a Higgs doublet can work (Minimal) SM lagrangian for a Higgs doublet $\Phi = (\phi^+, \phi^0)$ includes:

• Gauge ints. \rightarrow Gauge boson masses,

i.e.
$$\mathcal{L}_{HV} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$$

• Yukawa sector \rightarrow fermion masses,

i.e. $\mathcal{L}_Y = Y_u Q_L \Phi u_R$, etc.

• Higgs potential $V(\Phi) \rightarrow SSB$ and Higgs mass,

i.e.
$$V(\Phi) = \lambda (|\Phi|^2 - v^2)^2$$
,

- One unknown parameter λ ,
 - it determines Higgs mass: $m_h \simeq \lambda v$

ヘロト 人間ト ヘヨト ヘヨト

Higgs vevs in spherical coordinates

- The vevs: $\langle \phi_a^0 \rangle = \frac{v_a}{\sqrt{2}}$ (a=1,3) and $\langle S \rangle = \frac{u}{\sqrt{2}}$ • $v^2 = v_1^2 + v_2^2 + v_3^2 = (246 GeV)^2$
- In spherical coord.: $v_1 = v \cos \beta_1, \quad v_2 = v \sin \beta_1 \cos \beta_2 \text{ and } v_3 = v \sin \beta_1 \sin \beta_2.$

Image: A matrix and a matrix

Yukawa Lagrangian for 3+1-HDM

The lagrangian for the fermion couplings of the light Higgs boson is,

$$\mathcal{L}_{Y} = \left[\frac{\eta^{u}}{v}\bar{U}M_{u}U + \frac{\eta^{d}}{v}\bar{D}M_{d}D + \frac{\eta^{l}}{v}\bar{L}M_{l}L + \kappa^{u}\bar{U}_{i}\tilde{Z}^{u}U_{j} + \kappa^{d}\bar{D}_{i}\tilde{Z}^{d}D_{j} + \kappa^{l}\bar{L}_{i}\tilde{Z}^{l}L_{j}\right]h^{0}$$
(6)

For FC Higgs couplings:

$$\eta^u = O_{11}^T / \cos \theta, \quad \eta^d = O_{21}^T / \sin \theta \cos \phi, \quad \eta^l = O_{31}^T / \sin \theta \sin \phi,$$

For FV Higgs couplings:

$$\kappa^u = \frac{v}{u} O_{41}^T \cos \theta, \quad \kappa^d = \frac{v}{u} O_{41}^T \sin \theta \cos \phi, \quad \kappa^l = \frac{v}{u} O_{41}^T \cos \theta \sin \phi.$$

э

A 3+1 HDM - Gauge interactions

• The Higgs couplings of the lightest Higgs state $(h^0 = h_1^0)$ with vector bosons are written as $g_{hVV} = g_{hVV}^{sm} \chi_V$, with χ_V :

$$\chi_{V} = \frac{v_{1}}{v}O_{11}^{T} + \frac{v_{2}}{v}O_{21}^{T} + \frac{v_{3}}{v}O_{31}^{T}$$

= $\cos\beta_{1}O_{11}^{T} + \sin\beta_{1}\cos\beta_{2}O_{21}^{T} + \sin\beta_{1}\sin\beta_{2}O_{31}^{T}$ (7)

• Sum rule for light Higgs couplings:

$$\chi_V = \cos^2 \beta_1 \, \eta^u + \sin^2 \beta_1 \cos^2 \beta_2 \, \eta^d + \sin^2 \beta_1 \sin^2 \beta_2 \, \eta^l \qquad (8)$$

- To compare with LHC limits one needs to choose a pattern for v_i and O_{ab} ,
- For instance, we can choose: $v_1 >> v_2 = v_3$ i.e. $\beta_2 = \frac{\pi}{4}$, (similar to $\tan \beta >> 1$ in 2HDM)
- Another possibility is to assume equal vevs i.e. $\beta_1 = \beta_2 = \frac{\pi}{4}$, (similar to $\tan \beta = 1$ in 2HDM)

35 / 42

Higgs rotation

• We shall consider the special case when the light Higgs only mixes with the Flavon, i.e. the rotation matrix is written as: $O = O\tilde{O}$,

$$\tilde{O} = \begin{pmatrix} c_4 & 0 & 0 & s_4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s_4 & 0 & 0 & c_4 \end{pmatrix}$$
(9)

• \hat{O} diagonalizes the 3x3 subsystem of heavy Higges-flavon:

$$\hat{O} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & c_1 c_2 & s_1 c_2 & s_2\\ 0 & R_{21} & R_{22} & c_2 s_3\\ 0 & R_{31} & R_{32} & c_2 c_3 \end{pmatrix}$$
(10)

where: $R_{21} = -c_1 s_2 s_3 - s_1 c_3$, $R_{22} = c_1 c_3 - s_1 s_2 s_3$, $R_{31} = s_1 s_3 - c_1 s_2 c_3$, $R_{32} = -c_1 s_3 - s_1 s_2 c_3$, and $s_i = \sin \alpha_i$, $c_i = \cos \alpha_i$. Higgs Couplings - For special case $v_2 = v_3$ ($\phi = \frac{\pi}{4}$) The Higgs coupling with gauge bosons is:

$$\chi_V = \cos\theta \, O_{11}^T + \frac{\sin\theta}{\sqrt{2}} \left[O_{21}^T + O_{31}^T \right] \tag{11}$$

The FC and FV Higgs-fermion couplings factors are:

$$\eta^{u} = \frac{O_{11}^{T}}{\cos \theta}$$

$$\eta^{d} = \frac{\sqrt{2}}{\sin \theta} O_{21}^{T}$$

$$\eta^{l} = \frac{\sqrt{2}}{\sin \theta} O_{31}^{T}$$

$$\kappa^{u} = \frac{v}{u} O_{41}^{T} \cos \theta$$

$$\kappa^{d} = \frac{v}{u} O_{41}^{T} \frac{\sin \theta}{\sqrt{2}}$$

$$\kappa^{l} = \frac{v}{u} O_{41}^{T} \frac{\sin \theta}{\sqrt{2}}$$
The 750 GeV Resonance at LHC May 25, 2016 37 / 42

(BUAP)

Higgs Couplings - special cases

• In this case:
$$O_{11}^T = c_4$$
, $O_{21}^T = s_4 R_{31}$, $O_{31}^T = s_4 R_{32}$ and $O_{41}^T = s_4 c_2 c_3$.

- When we also assume: $\theta_2 = -\theta_1$, we have: $R_{31} = s_1 s_3 + c_1 s_1 c_3$, $R_{32} = -c_1 s_3 + s_1^2 c_3$,
- Further, when also $\theta_3 = 0$, which means that the heavy higgses do not mix with the flavon, we get: $O_{11}^T = c_4, O_{21}^T = s_1c_1s_4, O_{31}^T = s_1^2s_4$ and $O_{41}^T = c_1s_4$.

The Universal Higgs fit - P. Giardino et al., arXiv:1303.3570 [hep-ph]

Under the small deviations approximation:

$$c_X = (1 + \epsilon_X) \tag{14}$$

From a fit to all observables (signal strengths), and assuming no new particles contribute to the loop decays hgg and $h\gamma\gamma$, they get:

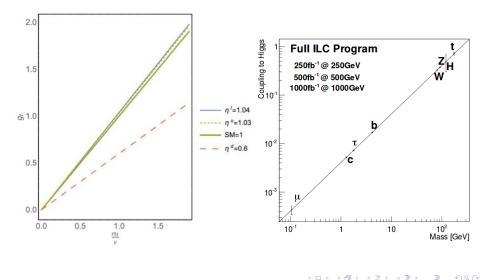
- hZZ (hWW): $\epsilon_Z = -0.01 \pm 0.13$ ($\epsilon_W = -0.15 \pm 0.14$),
- *hbb*: $\epsilon_b = -0.19 \pm 0.3$,
- $h\tau\tau$: $\epsilon_{\tau} = 0 \pm 0.18$
- *htt* (from *hgg*): $\epsilon_t = -0.21 \pm 0.23$

Parameter scenarios in 3+1 HDM

- We will work in the 2-family limit for yukawa couplings, i.e. $V_{cb} \simeq s_{23} = s_{23}^d s_{23}^u \simeq 0.04$
- With $s_{23}^u = r_2^u (1 + r_1^u)$, where: $r_1^u \simeq r_u$, $r_u = m_c/m_t$ and:

$$r_2^u = r_2^d \frac{1+r_d}{1+r_u} - \frac{s_{23}}{1+r_u} \tag{15}$$

• For up quarks the \tilde{Z} -matrix is given by:


$$\tilde{Z}^{u} = \begin{pmatrix} Y_{22}^{u} & Y_{23}^{u} \\ Y_{23}^{u} & 2s_{u}Y_{23}^{u} \end{pmatrix}$$
(16)

• $Y_{22}^u = r_1^u Y_{33}^u$, $Y_{23}^u = r_2^u Y_{33}^u$ and $Y_{33}^u \simeq \tilde{Y}_{33}^u = \sqrt{2}m_t/v$,

- For vevs: $\cos \theta \simeq 1$ and $\sin \theta \simeq \epsilon$
- For Higgs rotation: $\alpha_1 = -\alpha_2$ and $\alpha_3 = 0$

A B A B A B A A A

Higgs couplings in 3+1 HDM

(BUAP)

The 750 GeV Resonance at LHC May 25, 2016

41 / 42

Work on flavon-Higgs phenomenology

- I. Dorsner and S. M. Barr, "Flavon exchange effects in models with Abelian flavor symmetry," Phys. Rev. D 65, 095004 (2002) [hep-ph/0201207].
- J.L. Diaz-Cruz, "A More flavored Higgs boson in supersymmetric models," JHEP 0305, 036 (2003) [hep-ph/0207030];
- K. Tsumura and L. Velasco-Sevilla, "Phenomenology of flavon fields at the LHC," Phys. Rev. D 81, 036012 (2010) [arXiv:0911.2149 [hep-ph]].
- E.L. Berger, S.B. Giddings, H. Wang and H. Zhang, "Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry," Phys. Rev. D 90, no. 7, 076004 (2014) [arXiv:1406.6054 [hep-ph]].

ヘロト 不得下 イヨト イヨト