The remnant $C P$ transformation

Felix Gonzalez Canales

Departamento de Física
CINVESTAV-IPN
XXX Reunión Anual DPyC-SMF
Puebla, México

May 24, 2016

- Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Generalized $\mu-\tau$ reflection symmetry and leptonic CP violation Phys. Lett. B 753 (2016) 644-652
arXiv:1512.01551
- Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications
arXiv:1604.03510

Redefinition of lepton mixing matrix

- We adopt the charged lepton diagonal basis,

$$
\mathbf{m}_{l} \equiv \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

Redefinition of lepton mixing matrix

- We adopt the charged lepton diagonal basis,

$$
\mathbf{m}_{l} \equiv \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

- The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as

$$
\mathbf{m}_{\nu}=\mathbf{U}^{*} \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \mathbf{U}^{\dagger}
$$

under the assumption of Majorana neutrinos.

Redefinition of lepton mixing matrix

- We adopt the charged lepton diagonal basis,

$$
\mathbf{m}_{l} \equiv \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

- The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as

$$
\mathbf{m}_{\nu}=\mathbf{U}^{*} \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \mathbf{U}^{\dagger}
$$

under the assumption of Majorana neutrinos.

- The invariance of the neutrino mass matrix under the action of a CP transformation

$$
\nu_{L} \mapsto i \mathbf{X} \gamma_{0} \mathbf{C} \bar{\nu}_{L}^{\top} \quad \Rightarrow \mathbf{X}^{T} \mathbf{m}_{\nu} \mathbf{X}=\mathbf{m}_{\nu}^{*}
$$

\mathbf{X} should be a symmetric unitary matrix to avoid degenerate neutrino masses.

Redefinition of lepton mixing matrix

- We adopt the charged lepton diagonal basis,

$$
\mathbf{m}_{l} \equiv \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

- The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as

$$
\mathbf{m}_{\nu}=\mathbf{U}^{*} \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \mathbf{U}^{\dagger}
$$

under the assumption of Majorana neutrinos.

- The invariance of the neutrino mass matrix under the action of a CP transformation

$$
\nu_{L} \mapsto i \mathbf{X} \gamma_{0} \mathbf{C} \bar{\nu}_{L}^{\top} \quad \Rightarrow \mathbf{X}^{T} \mathbf{m}_{\nu} \mathbf{X}=\mathbf{m}_{\nu}^{*}
$$

\mathbf{X} should be a symmetric unitary matrix to avoid degenerate neutrino masses.

- The lepton mixing matrix

$$
\mathbf{U}=\boldsymbol{\Sigma} \mathbf{O}_{3 \times 3} \mathbf{Q}_{\nu}
$$

$\boldsymbol{\Sigma}$ is the Takagi factorization matrix of \mathbf{X} fulfilling $\mathbf{X}=\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}$,

$$
\mathbf{Q}_{\nu}=\operatorname{diag}\left(e^{-i k_{1} \pi / 2}, e^{-i k_{2} \pi / 2}, e^{-i k_{3} \pi / 2}\right)
$$

the entries of \mathbf{Q}_{ν} are ± 1 and $\pm i$ which encode the CP-parity or CP-signs of the neutrino states and it renders the light neutrino mass eigenvalues positive.a

Redefinition of lepton mixing matrix

- The matrix $\mathbf{O}_{3 \times 3}=\mathbf{O}_{1} \mathbf{O}_{2} \mathbf{O}_{3}$ is a generic three dimensional real orthogonal matrix, and it can be parameterized as

$$
\begin{gathered}
\mathbf{O}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & \sin \theta_{1} \\
0 & -\sin \theta_{1} & \cos \theta_{1}
\end{array}\right), \mathbf{O}_{2}=\left(\begin{array}{ccc}
\cos \theta_{2} & 0 & \sin \theta_{2} \\
0 & 1 & 0 \\
-\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right) \\
\mathbf{O}_{3}=\left(\begin{array}{ccc}
\cos \theta_{3} & \sin \theta_{3} & 0 \\
-\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

The neutrino oscillation data

Parameter 1		BFP $\pm 1 \sigma$	2σ range
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.60_{-0.18}^{+0.19}$	$7.26-7.99$	$7.11-8.18$
$\Delta m_{31}^{2}\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{NH})$	$2.48_{-0.07}^{+0.05}$	$2.35-2.59$	$2.30-2.65$
$\Delta m_{13}^{2}\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{IH})$	$2.38_{-0.06}^{+0.05}$	$2.26-2.48$	$2.20-2.54$
$\sin ^{2} \theta_{12} / 10^{-1}$	3.23 ± 0.16	$2.92-3.57$	$2.78-3.75$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NH})$	$5.67_{-1.24}^{+0.32}$	$4.14-6.23$	$3.93-6.43$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IH})$	$5.73_{-0.39}^{+0.25}$	$4.35-6.21$	$4.03-6.40$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NH})$	2.26 ± 0.12	$2.02-2.50$	$1.90-2.62$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IH})$	2.29 ± 0.12	$2.05-2.52$	$1.93-2.65$
$\delta / \pi(\mathrm{NH})$	$1.41_{-0.40}^{+0.55}$	$0.0-2.0$	$0.0-2.0$
$\delta / \pi(\mathrm{IH})$	1.48 ± 0.31	$0.00-0.09 \& 0.86-2.0$	$0.0-2.0$

The allowed ranges of $\left|\left(\mathbf{U}_{\text {PMNS }}\right)_{i j}\right|$ are explicitly given at the 3σ level:

NH

$$
\left(\begin{array}{l}
1 \\
\\
\\
\\
\end{array}\right.
$$

$$
\left.\begin{array}{ll}
0.520-0.607 & 0.137-0.162 \\
0.395-0.714 & 0.618-0.794 \\
0.420-0.731 & 0.590-0.772
\end{array}\right)
$$

IH

$$
\begin{aligned}
& 0 . \\
& 0 . \\
& 0 . \\
& \hline 1
\end{aligned}
$$

$$
\begin{aligned}
& 0.780-0.842 \\
& 0.207-0.555
\end{aligned}
$$

$$
\left(\begin{array}{ll}
0.779-0.842 & 0.520-0.607 \\
0.207-0.554 & 0.397-0.710 \\
0.229-0.566 & 0.426-0.729
\end{array}\right.
$$

The neutrino oscillation data

NH

$$
\binom{\begin{array}{c|ccc}
0.780-0.842 & 0.520-0.607 & 0.137-0.162 \\
\hline & 0.207-0.555 & 0.395-0.714 & 0.618-0.794 \\
& 0.226-0.566 & 0.420-0.731 & 0.590-0.772
\end{array}}{\hline}
$$

IH
$\left(\begin{array}{c|ccc}0.779-0.842 & 0.520-0.607 & 0.139-0 . \\ \hline \hline & 0.207-0.554 & 0.397-0.710 & 0.626-0.7 \\ & 0.229-0.566 & 0.426-0.729 & 0.592-0.7 \\ \hline \hline\end{array}\right.$
\star The $\left|U_{\mu i}\right| \simeq\left|U_{\tau i}\right|$ relation. Approximate $\mu-\tau$ relation.
\star Exact $\mu-\tau$ relation $\left|U_{\mu i}\right|=\left|U_{\tau i}\right|$. This equality holds if either of the following two sets of conditions can be satisfied.

$$
\left|U_{\mu i}\right|=\left|U_{\tau i}\right| \Leftrightarrow\left\{\begin{array}{l}
\theta_{23}=\frac{\pi}{4}, \theta_{13}=0 \\
\theta_{23}=\frac{\pi}{4}, \delta_{\mathrm{CP}}= \pm \frac{\pi}{2}
\end{array}\right.
$$

It is clear that θ_{13} has already bee ruled out, but $\theta_{23}=\frac{\pi}{4}$ and $\delta_{\mathrm{CP}}=-\frac{\pi}{2}$ are both allowed at the 1 or 2σ level (and $\delta_{\mathrm{CP}}=\frac{\pi}{2}$ is also allowed at the 3σ).

The $\mu-\tau$ Flavor Symmetry

We claim that there must be a partial or approximate $\mu-\tau$ flavor symmetry behind the observed pattern of the PMNS matrix. The $\mu-\tau$ symmetry gives the constraint that Lagrangian is invariant under transformation of μ and τ neutrinos states.

* The $\mu-\tau$ permutation symmetry

The neutrino mass term is unchanged under the transformations;

$$
\nu_{e} \longrightarrow \nu_{e}, \quad \nu_{\mu} \longrightarrow \nu_{\tau}, \quad \nu_{\tau} \longrightarrow \nu_{\mu}
$$

* The $\mu-\tau$ reflection symmetry

The neutrino mass term is unchanged under the transformations ${ }^{2}$;

$$
\nu_{e} \longrightarrow \nu_{e}^{c}, \quad \nu_{\mu} \longrightarrow \nu_{\tau}^{c}, \quad \nu_{\tau} \longrightarrow \nu_{\mu}^{c}
$$

${ }^{2}$ The superscript c denotes the charged conjugation.

Generalized $\mu-\tau$ reflection

This interesting CP transformation takes the following form:

$$
\mathbf{X}=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} \cos \Theta & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta \\
0 & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta & e^{i \gamma} \cos \Theta
\end{array}\right)
$$

where the parameters α, β, γ, and Θ are real.

Generalized $\mu-\tau$ reflection

This interesting CP transformation takes the following form:

$$
\mathbf{X}=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} \cos \Theta & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta \\
0 & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta & e^{i \gamma} \cos \Theta
\end{array}\right)
$$

where the parameters α, β, γ, and Θ are real. The corresponding Takagi factorization matrix is given by

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
e^{i \frac{\alpha}{2}} & 0 & 0 \\
0 & e^{i \frac{\beta}{2}} \cos \frac{\Theta}{2} & i e^{i \frac{\beta}{2}} \sin \frac{\Theta}{2} \\
0 & i e^{i \frac{\gamma}{2}} \sin \frac{\Theta}{2} & e^{i \frac{\gamma}{2}} \cos \frac{\Theta}{2}
\end{array}\right)
$$

Generalized $\mu-\tau$ reflection

This interesting CP transformation takes the following form:

$$
\mathbf{X}=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} \cos \Theta & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta \\
0 & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta & e^{i \gamma} \cos \Theta
\end{array}\right)
$$

where the parameters α, β, γ, and Θ are real. The corresponding Takagi factorization matrix is given by

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
e^{i \frac{\alpha}{2}} & 0 & 0 \\
0 & e^{i \frac{\beta}{2}} \cos \frac{\Theta}{2} & i e^{i \frac{\beta}{2}} \sin \frac{\Theta}{2} \\
0 & i e^{i \frac{\gamma}{2}} \sin \frac{\Theta}{2} & e^{i \frac{\gamma}{2}} \cos \frac{\Theta}{2}
\end{array}\right)
$$

As a result the resulting lepton mixing angles are determined as

$$
\sin ^{2} \theta_{13}=\sin ^{2} \theta_{2}, \quad \sin ^{2} \theta_{12}=\sin ^{2} \theta_{3}, \quad \sin ^{2} \theta_{23}=\frac{1}{2}\left(1-\cos \Theta \cos 2 \theta_{1}\right)
$$

Generalized $\mu-\tau$ reflection

This interesting CP transformation takes the following form:

$$
\mathbf{X}=\left(\begin{array}{ccc}
e^{i \alpha} & 0 & 0 \\
0 & e^{i \beta} \cos \Theta & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta \\
0 & i e^{i \frac{(\beta+\gamma)}{2}} \sin \Theta & e^{i \gamma} \cos \Theta
\end{array}\right)
$$

where the parameters α, β, γ, and Θ are real. The corresponding Takagi factorization matrix is given by

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
e^{i \frac{\alpha}{2}} & 0 & 0 \\
0 & e^{i \frac{\beta}{2}} \cos \frac{\Theta}{2} & i e^{i \frac{\beta}{2}} \sin \frac{\Theta}{2} \\
0 & i e^{i \frac{\gamma}{2}} \sin \frac{\Theta}{2} & e^{i \frac{\gamma}{2}} \cos \frac{\Theta}{2}
\end{array}\right)
$$

As a result the resulting lepton mixing angles are determined as

$$
\sin ^{2} \theta_{13}=\sin ^{2} \theta_{2}, \quad \sin ^{2} \theta_{12}=\sin ^{2} \theta_{3}, \quad \sin ^{2} \theta_{23}=\frac{1}{2}\left(1-\cos \Theta \cos 2 \theta_{1}\right)
$$

while the CP violation parameters are predicted as

$$
\begin{aligned}
& J_{\mathrm{CP}}=\frac{1}{4} \sin \Theta \sin \theta_{2} \sin 2 \theta_{3} \cos ^{2} \theta_{2}, \quad \sin \delta_{\mathrm{CP}}=\frac{\sin \Theta \operatorname{sign}\left[\sin \theta_{2} \sin 2 \theta_{3}\right]}{\sqrt{1-\cos ^{2} \Theta \cos ^{2} 2 \theta_{1}}} \\
& \tan \delta_{\mathrm{CP}}=\tan \Theta \csc 2 \theta_{1}, \quad \phi_{12}=\frac{k_{2}-k_{1}}{2} \pi, \quad \phi_{13}=\frac{k_{3}-k_{1}}{2} \pi, \quad \delta_{\mathrm{CP}}=\frac{k_{3}-k_{2}}{2} \pi-\phi_{23} .
\end{aligned}
$$

Generalized $\mu-\tau$ reflection

We have a correlation between δ_{CP} and the atmospheric angle.

$$
\sin ^{2} \delta_{\mathrm{CP}} \sin ^{2} 2 \theta_{23}=\sin ^{2} \Theta
$$

Taking $\Theta= \pm \frac{\pi}{2}$, both θ_{23} and δ_{CP} are maximal, since the residual CP transformation \mathbf{X} reduces to the standard $\mu-\tau$ reflection. When $\theta_{1}= \pm \frac{\pi}{4}$, the atmospheric mixing angle θ_{23} is maximal and $\tan \delta_{\mathrm{CP}}= \pm \tan \Theta$.

Neutrinoless double beta decay

The rare decay $(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-}$is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$
\left|m_{e e}\right|=\left|m_{1} \cos ^{2} \theta_{12} \cos ^{2} \theta_{13}+m_{2} \sin ^{2} \theta_{12} \cos ^{2} \theta_{13} e^{-i 2 \phi_{12}}+m_{3} \sin ^{2} \theta_{13} e^{-i 2 \phi_{13}}\right|
$$

Neutrinoless double beta decay

The rare decay $(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-}$is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$
\left|m_{e e}\right|=\left|m_{1} \cos ^{2} \theta_{12} \cos ^{2} \theta_{13}+m_{2} \sin ^{2} \theta_{12} \cos ^{2} \theta_{13} e^{-i 2 \phi_{12}}+m_{3} \sin ^{2} \theta_{13} e^{-i 2 \phi_{13}}\right|
$$

Within our scheme the Majorana phases are predicted as

$$
\phi_{12}=\frac{k_{2}-k_{1}}{2} \pi \quad \text { and } \quad \phi_{13}=\frac{k_{3}-k_{1}}{2} \pi
$$

In other words, these phase factors are predicted to lie at their CP conserving values, which correspond to the CP signs of neutrino states. This implies that the two Majorana phases $\left(\phi_{12}, \phi_{13}\right)$ can only take the following nine values

$$
(0,0),(0, \pm \pi / 2),(\pm \pi / 2,0) \quad \text { and } \quad(\pm \pi / 2, \pm \pi / 2)
$$

Neutrinoless double beta decay

The rare decay $(A, Z) \rightarrow(A, Z+2)+e^{-}+e^{-}$is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$
\left|m_{e e}\right|=\left|m_{1} \cos ^{2} \theta_{12} \cos ^{2} \theta_{13}+m_{2} \sin ^{2} \theta_{12} \cos ^{2} \theta_{13} e^{-i 2 \phi_{12}}+m_{3} \sin ^{2} \theta_{13} e^{-i 2 \phi_{13}}\right|
$$

Within our scheme the Majorana phases are predicted as

$$
\phi_{12}=\frac{k_{2}-k_{1}}{2} \pi \quad \text { and } \quad \phi_{13}=\frac{k_{3}-k_{1}}{2} \pi
$$

In other words, these phase factors are predicted to lie at their CP conserving values, which correspond to the CP signs of neutrino states. This implies that the two Majorana phases $\left(\phi_{12}, \phi_{13}\right)$ can only take the following nine values

$$
(0,0),(0, \pm \pi / 2),(\pm \pi / 2,0) \quad \text { and } \quad(\pm \pi / 2, \pm \pi / 2)
$$

The effective mass $m_{e e}$ is an even function. This means that for each possible neutrino mass ordering, there are only four independent regions for the effective mass.

Neutrinoless double beta decay

Normal Ordering		
$\operatorname{CP} \operatorname{signs} Q_{\nu}$	$\left(\phi_{12}, \phi_{13}\right)$	$\left\|m_{e e}\right\|\left(10^{-2} \mathrm{eV}\right)$
$\operatorname{diag}(1,1,1)$	$(0,0)$	$[0.32,7.22]$
$\operatorname{diag}(1,1,-i)$	$\left(0, \frac{\pi}{2}\right)$	$\left[9.50 \times 10^{-2}, 6.89\right]$
$\operatorname{diag}(1,-i, 1)$	$\left(\frac{\pi}{2}, 0\right)$	$[0,3.31]$
$\operatorname{diag}(1,-i,-i)$	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	$[0,2.94]$

Inverted Ordering		
CP signs Q_{ν}	$\left(\phi_{12}, \phi_{13}\right)$	$\left\|m_{e e}\right\|\left(10^{-2} \mathrm{eV}\right)$
$\operatorname{diag}(1,1,1)$	$(0,0)$	$[4.59,8.20]$
$\operatorname{diag}(1,1,-i)$	$\left(0, \frac{\pi}{2}\right)$	
$\operatorname{diag}(1,-i, 1)$	$\left(\frac{\pi}{2}, 0\right)$	$[1.10,3.45]$
$\operatorname{diag}(1,-i,-i)$	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	

The allowed ranges for the effective mass in for the case of normal and inverted ordering. Notice that in our generalized $\mu-\tau$ reflection scenario the Majorana phases can only be 0 and $\pm \pi / 2$.

Neutrinoless double beta decay

The red and blue dashed lines indicate the regions currently allowed at 3σ by neutrino oscillation data. The most stringent upper bound $\left|m_{e e}\right|<0.120 \mathrm{eV}$ from EXO-200 in combination with KamLAND-ZEN. The upper limit on the mass of the lightest neutrino is derived from the lastest Planck result
$\sum_{i} m_{i}<0.230 \mathrm{eV}$ at 95% level.

CP violation in neutrino oscillations

* The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.

CP violation in neutrino oscillations

* The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.
\star The transition probability $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ in matter has the form

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \simeq P_{\mathrm{atm}}+P_{\mathrm{sol}} \pm 2 \sqrt{P_{\mathrm{atm}}} \sqrt{P_{\mathrm{sol}}} \cos \left(\Delta_{32} \pm \arcsin \left(\frac{\sin \Theta}{\sin 2 \theta_{23}}\right)\right)
$$

CP violation in neutrino oscillations

* The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.
* The transition probability $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ in matter has the form

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \simeq P_{\mathrm{atm}}+P_{\mathrm{sol}} \pm 2 \sqrt{P_{\mathrm{atm}}} \sqrt{P_{\mathrm{sol}}} \cos \left(\Delta_{32} \pm \arcsin \left(\frac{\sin \Theta}{\sin 2 \theta_{23}}\right)\right)
$$

* The neutrino anti-neutrino asymmetry in matter is given by

$$
A_{\mu e}= \pm \frac{2 \sqrt{P_{\mathrm{atm}}} \sqrt{P_{\mathrm{sol}}} \sin \Delta_{23} \sin \Theta}{\left(P_{\mathrm{atm}}+P_{\mathrm{sol}}\right) \sin 2 \theta_{23} \pm 2 \sqrt{P_{\mathrm{atm}}} \sqrt{P_{\mathrm{sol}}} \sqrt{\sin ^{2} 2 \theta_{23}-\sin ^{2} \Theta} \cos \Delta_{23}}
$$

where

$$
\sqrt{P_{\mathrm{atm}}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31}-a L\right)}{\left(\Delta_{31}-a L\right)} \Delta_{31}, \quad \sqrt{P_{\mathrm{sol}}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{a L} \Delta_{21},
$$

$\Delta_{k j}=\Delta m_{k j}^{2} L /(4 E)$ with $\Delta m_{k j}^{2}=m_{k}^{2}-m_{j}^{2}, L$ is the baseline, E is the energy of neutrino. $a=G_{F} N_{e} / \sqrt{2}, G_{F}$ is the Fermi constant and N_{e} is the density of electrons, with $a \approx(3500 \mathrm{~km})^{-1}$ for $\rho Y_{e}=3.0 \mathrm{~g} \mathrm{~cm}^{-3}$, where Y_{e} is the electron fraction.

CP violation in neutrino oscillations

The mixing angle θ_{23} is taken within the 3σ range
$0.393 \leq \sin ^{2} \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values:
$\Delta m_{21}^{2}=7.60 \times 10^{-5} \mathrm{eV}^{2}$, $\left|\Delta m_{31}^{2}\right|=2.48 \times 10^{-3} \mathrm{eV}^{2}$, $\sin \theta_{12}=0.323$ and $\sin \theta_{13}=0.0226$. The Θ
parameter is fixed to the value $3 \pi / 8$. The figure corresponds to the case of normal ordering and the sign combinations.

CP violation in neutrino oscillations

T2K Experiment

T2K Experiment

The transition probability $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ at a baseline of 295 km which corresponds to the T2K experiment. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin ^{2} \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values:
$\Delta m_{21}^{2}=7.60 \times 10^{-5} \mathrm{eV}^{2}$, $\left|\Delta m_{31}^{2}\right|=2.48 \times 10^{-3} \mathrm{eV}^{2}$, $\sin \theta_{12}=0.323$ and $\sin \theta_{13}=0.0226$.

CP violation in neutrino oscillations

NO ν A Experiment

The transition probability $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ at a baseline of 810km which corresponds to the NO ν A experiment. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin ^{2} \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values:

$$
\begin{aligned}
& \Delta m_{21}^{2}=7.60 \times 10^{-5} \mathrm{eV}^{2} \\
& \left|\Delta m_{31}^{2}\right|=2.48 \times 10^{-3} \mathrm{eV}^{2} \\
& \sin \theta_{12}=0.323 \text { and } \\
& \sin \theta_{13}=0.0226
\end{aligned}
$$

CP violation in neutrino oscillations

DUNE Experiment

The transition probability $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)$ at a baseline of 1300 km , which corresponds to the DUNE proposal. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin ^{2} \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values: $\Delta m_{21}^{2}=7.60 \times 10^{-5} \mathrm{eV}^{2}$, $\left|\Delta m_{31}^{2}\right|=2.48 \times 10^{-3} \mathrm{eV}^{2}$, $\sin \theta_{12}=0.323$ and $\sin \theta_{13}=0.0226$.

Conclusions

- We have proposed a generalized $\mu-\tau$ reflection scenario for leptonic CP violation and derived the corresponding restrictions on lepton flavor mixing parameters.
- In contrast with flavor symmetry schemes, our generalized CP symmetry approach can constrain not only the mixing angles but also the CP violating phases in function of four parameters.
- We found that the "Majorana" phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay amplitudes.
- We have obtained a new correlation between the atmospheric mixing angle θ_{23} and the "Dirac" CP phase δ_{CP}.
- We have also analysed the phenomenological implications of our scheme for present as well as upcoming neutrino oscillation experiments $\mathrm{T} 2 \mathrm{~K}, \mathrm{NO} \nu \mathrm{A}$ and DUNE.

