The remnant CP transformation

Felix Gonzalez Canales

Departamento de Física CINVESTAV-IPN XXX Reunión Anual DPyC-SMF Puebla, México

May 24, 2016

F. Gonzalez-Canales (CINVESTA

Remnant CP

1/18

May 24, 2016

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

• Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Generalized $\mu - \tau$ reflection symmetry and leptonic CP violation Phys. Lett. B 753 (2016) 644-652 arXiv:1512.01551

• Peng Chen, Gui-Jun Ding, FGC and J. W. F. Valle, Classifying CP transformations according to their texture zeros: theory and implications

2/18

Remnant CP

(日) (四) (日) (日) (日)

May 24, 2016

- 20

2 / 18

arXiv:1604.03510

• We adopt the charged lepton diagonal basis,

 $\mathbf{m}_l \equiv \operatorname{diag}\left(m_e, m_\mu, m_\tau\right).$

F. Gonzalez-Canales (CINVESTA

• We adopt the charged lepton diagonal basis,

 $\mathbf{m}_l \equiv \operatorname{diag}\left(m_e, m_\mu, m_\tau\right).$

• The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as $\mathbf{m}_{\nu} = \mathbf{U}^* \operatorname{diag}\left(m_1, m_2, m_3\right) \mathbf{U}^{\dagger}$

under the assumption of Majorana neutrinos.

• We adopt the charged lepton diagonal basis,

 $\mathbf{m}_l \equiv \operatorname{diag}\left(m_e, m_\mu, m_\tau\right).$

• The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as $\mathbf{m}_{\nu} = \mathbf{U}^* \operatorname{diag}\left(m_1, m_2, m_3\right) \mathbf{U}^{\dagger}$

under the assumption of Majorana neutrinos.

F. Gonzalez-Canales (CINVESTA

• The invariance of the neutrino mass matrix under the action of a CP transformation

Remnant CP

$$\nu_L \mapsto i \mathbf{X} \gamma_0 \mathbf{C} \bar{\nu}_L^\top \quad \Rightarrow \mathbf{X}^T \mathbf{m}_{\nu} \mathbf{X} = \mathbf{m}_{\nu}^* \,,$$

 ${\bf X}$ should be a symmetric unitary matrix to avoid degenerate neutrino masses.

3/18

< ロト (同) (三) (三) 三 三 (

May 24, 2016

• We adopt the charged lepton diagonal basis,

 $\mathbf{m}_l \equiv \operatorname{diag}\left(m_e, m_\mu, m_\tau\right).$

• The neutrino mass matrix \mathbf{m}_{ν} can be expressed via the mixing matrix \mathbf{U} as $\mathbf{m}_{\nu} = \mathbf{U}^* \operatorname{diag}\left(m_1, m_2, m_3\right) \mathbf{U}^{\dagger}$

under the assumption of Majorana neutrinos.

• The invariance of the neutrino mass matrix under the action of a CP transformation

$$\nu_L \mapsto i \mathbf{X} \gamma_0 \mathbf{C} \bar{\nu}_L^\top \quad \Rightarrow \mathbf{X}^T \mathbf{m}_{\nu} \mathbf{X} = \mathbf{m}_{\nu}^* \,,$$

X should be a symmetric unitary matrix to avoid degenerate neutrino masses.

• The lepton mixing matrix

$$\mathbf{U} = \boldsymbol{\Sigma} \, \mathbf{O}_{3 \times 3} \, \mathbf{Q}_{\nu} \,,$$

 Σ is the Takagi factorization matrix of **X** fulfilling $\mathbf{X} = \Sigma \Sigma^T$,

$$\mathbf{Q}_{\nu} = \text{diag}\left(e^{-ik_1\pi/2}, e^{-ik_2\pi/2}, e^{-ik_3\pi/2}\right)$$

the entries of \mathbf{Q}_{ν} are ± 1 and $\pm i$ which encode the CP-parity or CP-signs of the neutrino states and it renders the light neutrino mass eigenvalues positive $\mathfrak{Q}_{\mathcal{Q}}$

• The matrix $O_{3\times 3} = O_1 O_2 O_3$ is a generic three dimensional real orthogonal matrix, and it can be parameterized as

$$\mathbf{O}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{1} & \sin \theta_{1} \\ 0 & -\sin \theta_{1} & \cos \theta_{1} \end{pmatrix}, \mathbf{O}_{2} = \begin{pmatrix} \cos \theta_{2} & 0 & \sin \theta_{2} \\ 0 & 1 & 0 \\ -\sin \theta_{2} & 0 & \cos \theta_{2} \end{pmatrix}$$
$$\mathbf{O}_{3} = \begin{pmatrix} \cos \theta_{3} & \sin \theta_{3} & 0 \\ -\sin \theta_{3} & \cos \theta_{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

F. Gonzalez-Canales (CINVESTA

3

The neutrino oscillation data

F

Parameter ¹	$BFP\pm 1\sigma$	2σ range	3σ range
$\Delta m_{21}^2 \left[10^{-5} \text{ eV}^2 \right]$	$7.60^{\pm 0.19}_{-0.18}$	7.26 - 7.99	7.11 - 8.18
$\Delta m_{31}^2 \left[10^{-3} \text{ eV}^2 \right] \text{ (NH)}$	$2.48^{+0.05}_{-0.07}$	2.35 - 2.59	2.30 - 2.65
$\Delta m_{13}^2 \left[10^{-3} \text{ eV}^2 \right] \text{ (IH)}$	$2.38\substack{+0.05\\-0.06}$	2.26 - 2.48	2.20 - 2.54
$\sin^2 \theta_{12} / 10^{-1}$	3.23 ± 0.16	2.92 - 3.57	2.78 - 3.75
$\sin^2 \theta_{23}/10^{-1}$ (NH)	$5.67^{+0.32}_{-1.24}$	4.14 - 6.23	3.93 - 6.43
$\sin^2 \theta_{23}/10^{-1}$ (IH)	$5.73_{-0.39}^{+0.25}$	4.35 - 6.21	4.03 - 6.40
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.26 ± 0.12	2.02 - 2.50	1.90 - 2.62
$\sin^2 \theta_{13}/10^{-2}$ (IH)	2.29 ± 0.12	2.05 - 2.52	1.93 - 2.65
δ/π (NH)	$1.41\substack{+0.55 \\ -0.40}$	0.0 - 2.0	0.0 - 2.0
δ/π (IH)	1.48 ± 0.31	0.00 - 0.09 & 0.86 - 2.0	0.0 - 2.0

The allowed ranges of $|(\mathbf{U}_{\text{PMNS}})_{ij}|$ are explicitly given at the 3σ level:

NH			IH		
(0.780 - 0.842)	0.520 - 0.607	0.137 - 0.162	(0.779 - 0.8)	12 0.520 - 0.607	0.139 - 0.163
0.207 - 0.555	0.395 - 0.714	0.618 - 0.794	0.207 - 0.53	54 0.397 - 0.710	0.626 - 0.792
0.226 - 0.566	0.420 - 0.731	0.590 - 0.772 /	0.229 - 0.50	66 0.426 - 0.729	0.592 - 0.765
1			∢ □	→ # → + = → + =	▶ ≣ りへで
Gonzalez-Canales	(CINVESTA	Remnant CP	5/18	May 24, 20	16 5 / 18

The neutrino oscillation data

\mathbf{NH}

\mathbf{IH}

(0.780 - 0)	.842 0.520 - 0	.607 0.137 - 0.1	(0.779 - 0.842)	0.520 - 0.607	0.139 - 0.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{rrr} 0.555 & 0.395 - 0 \\ 0.566 & 0.420 - 0 \end{array}$	$\begin{array}{rrr} .714 & 0.618 - 0.79 \\ .731 & 0.590 - 0.77 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ccc} 0.397 - 0.710 \\ 0.426 - 0.729 \end{array}$	0.626 - 0.7 0.592 - 0.7

- * The $|U_{\mu i}| \simeq |U_{\tau i}|$ relation. Approximate $\mu \tau$ relation.
- * Exact $\mu \tau$ relation $|U_{\mu i}| = |U_{\tau i}|$. This equality holds if either of the following two sets of conditions can be satisfied.

$$|U_{\mu i}| = |U_{\tau i}| \Leftrightarrow \begin{cases} \theta_{23} = \frac{\pi}{4}, \theta_{13} = 0; \\ \theta_{23} = \frac{\pi}{4}, \delta_{CP} = \pm \frac{\pi}{2} \end{cases}$$

It is clear that θ_{13} has already bee ruled out, but $\theta_{23} = \frac{\pi}{4}$ and $\delta_{CP} = -\frac{\pi}{2}$ are both allowed at the 1 or 2σ level (and $\delta_{CP} = \frac{\pi}{2}$ is also allowed at the 3σ).

The $\mu - \tau$ Flavor Symmetry

We claim that there must be a partial or approximate $\mu - \tau$ flavor symmetry behind the observed pattern of the PMNS matrix. The $\mu - \tau$ symmetry gives the constraint that Lagrangian is invariant under transformation of μ and τ neutrinos states.

* The $\mu - \tau$ permutation symmetry The neutrino mass term is unchanged under the transformations;

$$\nu_e \longrightarrow \nu_e , \qquad \nu_\mu \longrightarrow \nu_\tau , \qquad \nu_\tau \longrightarrow \nu_\mu .$$

* The $\mu - \tau$ reflection symmetry The neutrino mass term is unchanged under the transformations²;

$$\nu_e \longrightarrow \nu_e^c, \qquad \nu_\mu \longrightarrow \nu_\tau^c, \qquad \nu_\tau \longrightarrow \nu_\mu^c.$$

²The superscript c denotes the charged conjugation. $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \Xi \rightarrow \langle \Box \rangle$

This interesting CP transformation takes the following form:

$$\mathbf{X} = \begin{pmatrix} e^{i\alpha} & 0 & 0\\ 0 & e^{i\beta}\cos\Theta & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta\\ 0 & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta & e^{i\gamma}\cos\Theta \end{pmatrix}$$

where the parameters α , β , γ , and Θ are real.

This interesting CP transformation takes the following form:

$$\mathbf{X} = \left(\begin{array}{ccc} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta}\cos\Theta & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta \\ 0 & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta & e^{i\gamma}\cos\Theta \end{array} \right) \,,$$

where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by

$$\boldsymbol{\Sigma} = \begin{pmatrix} e^{i\frac{\Theta}{2}} & 0 & 0\\ 0 & e^{i\frac{\Theta}{2}}\cos\frac{\Theta}{2} & ie^{i\frac{\Theta}{2}}\sin\frac{\Theta}{2}\\ 0 & ie^{i\frac{\gamma}{2}}\sin\frac{\Theta}{2} & e^{i\frac{\gamma}{2}}\cos\frac{\Theta}{2} \end{pmatrix}.$$

F. Gonzalez-Canales (CINVESTA

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

This interesting CP transformation takes the following form:

$$\mathbf{X} = \left(\begin{array}{ccc} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta}\cos\Theta & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta \\ 0 & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta & e^{i\gamma}\cos\Theta \end{array} \right) \,,$$

where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by

$$\boldsymbol{\Sigma} = \begin{pmatrix} e^{i\frac{\alpha}{2}} & 0 & 0\\ 0 & e^{i\frac{\beta}{2}}\cos\frac{\Theta}{2} & ie^{i\frac{\beta}{2}}\sin\frac{\Theta}{2}\\ 0 & ie^{i\frac{\gamma}{2}}\sin\frac{\Theta}{2} & e^{i\frac{\gamma}{2}}\cos\frac{\Theta}{2} \end{pmatrix}.$$

As a result the resulting lepton mixing angles are determined as

$$\sin^2 \theta_{13} = \sin^2 \theta_2, \quad \sin^2 \theta_{12} = \sin^2 \theta_3, \quad \sin^2 \theta_{23} = \frac{1}{2} \left(1 - \cos \Theta \cos 2\theta_1 \right) \,,$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

This interesting CP transformation takes the following form:

$$\mathbf{X} = \left(\begin{array}{ccc} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta}\cos\Theta & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta \\ 0 & ie^{i\frac{(\beta+\gamma)}{2}}\sin\Theta & e^{i\gamma}\cos\Theta \end{array} \right) \,,$$

where the parameters α , β , γ , and Θ are real. The corresponding Takagi factorization matrix is given by

$$\boldsymbol{\Sigma} = \begin{pmatrix} e^{i\frac{\alpha}{2}} & 0 & 0\\ 0 & e^{i\frac{\beta}{2}}\cos\frac{\Theta}{2} & ie^{i\frac{\beta}{2}}\sin\frac{\Theta}{2}\\ 0 & ie^{i\frac{\gamma}{2}}\sin\frac{\Theta}{2} & e^{i\frac{\gamma}{2}}\cos\frac{\Theta}{2} \end{pmatrix}.$$

As a result the resulting lepton mixing angles are determined as

$$\sin^2 \theta_{13} = \sin^2 \theta_2$$
, $\sin^2 \theta_{12} = \sin^2 \theta_3$, $\sin^2 \theta_{23} = \frac{1}{2} \left(1 - \cos \Theta \cos 2\theta_1 \right)$,
while the CP violation parameters are predicted as

 $J_{\rm CP} = \frac{1}{4}\sin\Theta\sin\theta_2\sin2\theta_3\cos^2\theta_2, \quad \sin\delta_{\rm CP} = \frac{\sin\Theta\sin[\sin\theta_2\sin2\theta_3]}{\sqrt{1-\cos^2\Theta\cos^22\theta_1}},$ $\tan\delta_{\rm CP} = \tan\Theta\csc2\theta_1, \quad \phi_{12} = \frac{k_2-k_1}{2}\pi, \quad \phi_{13} = \frac{k_3-k_1}{2}\pi, \quad \delta_{\rm CP} = \frac{k_3-k_2}{2}\pi - \phi_{23}.$

F. Gonzalez-Canales (CINVESTA	Remnant CP 8/18	May 24, 2016 8	/ 18
-------------------------------	-----------------	----------------	------

We have a correlation between $\delta_{\rm CP}$ and the atmospheric angle.

$$\sin^2 \delta_{\rm CP} \sin^2 2\theta_{23} = \sin^2 \Theta \,.$$

Taking $\Theta = \pm \frac{\pi}{2}$, both θ_{23} and δ_{CP} are maximal, since the residual CP transformation **X** reduces to the standard $\mu - \tau$ reflection. When $\theta_1 = \pm \frac{\pi}{4}$, the atmospheric mixing angle θ_{23} is maximal and $\tan \delta_{CP} = \pm \tan \Theta$.

F. Gonzalez-Canales (CINVESTA

The rare decay $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$ is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$|m_{ee}| = \left| m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{-i2\phi_{12}} + m_3 \sin^2 \theta_{13} e^{-i2\phi_{13}} \right| ,$$

Remnant CP

10/18

・ロト ・四ト ・ヨト ・ヨト

May 24, 2016

3

The rare decay $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$ is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$|m_{ee}| = \left| m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{-i2\phi_{12}} + m_3 \sin^2 \theta_{13} e^{-i2\phi_{13}} \right| ,$$

Within our scheme the Majorana phases are predicted as

$$\phi_{12} = rac{k_2 - k_1}{2}\pi$$
 and $\phi_{13} = rac{k_3 - k_1}{2}\pi$

In other words, these phase factors are predicted to lie at their CP conserving values, which correspond to the CP signs of neutrino states. This implies that the two Majorana phases (ϕ_{12}, ϕ_{13}) can only take the following nine values

$$(0,0), (0,\pm\pi/2), (\pm\pi/2,0)$$
 and $(\pm\pi/2,\pm\pi/2).$

10/18

Remnant CP

May 24, 2016

10 / 18

F. Gonzalez-Canales (CINVESTA

The rare decay $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$ is the lepton number violating process "par excellence". In the symmetric parametrization, the amplitude for the decay is proportional to the effective mass parameter

$$|m_{ee}| = \left| m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{-i2\phi_{12}} + m_3 \sin^2 \theta_{13} e^{-i2\phi_{13}} \right| ,$$

Within our scheme the Majorana phases are predicted as

$$\phi_{12} = rac{k_2 - k_1}{2}\pi$$
 and $\phi_{13} = rac{k_3 - k_1}{2}\pi$.

In other words, these phase factors are predicted to lie at their CP conserving values, which correspond to the CP signs of neutrino states. This implies that the two Majorana phases (ϕ_{12}, ϕ_{13}) can only take the following nine values

$$(0,0), (0,\pm\pi/2), (\pm\pi/2,0)$$
 and $(\pm\pi/2,\pm\pi/2).$

The effective mass m_{ee} is an even function. This means that for each possible neutrino mass ordering, there are only four independent regions for the effective mass.

F. Gonzalez-Canales (CINVESTA

Remnant CP

P 10/18

Normal Ordering			
CP signs Q_{ν}	(ϕ_{12},ϕ_{13})	$ m_{ee} \left(10^{-2} \text{ eV} \right)$	
$\operatorname{diag}(1,1,1)$	(0, 0)	[0.32,7.22]	
$\operatorname{diag}(1, 1, -i)$	$\left(0, \frac{\pi}{2}\right)$	$[9.50 \times 10^{-2}, 6.89]$	
$\operatorname{diag}(1,-i,1)$	$(\frac{\pi}{2}, 0)$	[0, 3.31]	
$\operatorname{diag}(1,-i,-i)$	$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$	[0, 2.94]	

Inverted Ordering				
CP signs Q_{ν}	(ϕ_{12},ϕ_{13})	$ m_{ee} \left(10^{-2} \text{ eV} \right)$		
$\frac{\operatorname{diag}\left(1,1,1\right)}{\operatorname{diag}\left(1,1,-i\right)}$	$ \begin{array}{c} (0,0) \\ (0,\frac{\pi}{2}) \end{array} $	[4.59,8.20]		
$\begin{array}{c} \operatorname{diag}\left(1,-i,1\right)\\ \operatorname{diag}\left(1,-i,-i\right)\end{array}$	$\begin{pmatrix} \frac{\pi}{2}, 0 \\ (\frac{\pi}{2}, \frac{\pi}{2}) \end{pmatrix}$	[1.10,3.45]		

The allowed ranges for the effective mass in for the case of normal and inverted ordering. Notice that in our generalized $\mu - \tau$ reflection scenario the Majorana phases can only be 0 and $\pm \pi/2$.

F. Gonzalez-Canales (CINVESTA

Remnant CP

11/18

11 / 18

э

The red and blue dashed lines indicate the regions currently allowed at 3σ by neutrino oscillation data. The most stringent upper bound $|m_{ee}| < 0.120$ eV from EXO-200 in combination with KamLAND-ZEN. The upper limit on the mass of the lightest neutrino is derived from the lastest Planck result $\sum_{i} m_i < 0.230 \text{eV}$ at 95% level.

F. Gonzalez-Canales (CINVESTA

Remnant CP

CP 12/18

May 24, 2016

6 12 / 18

 \star The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.

F. Gonzalez-Canales (CINVESTA

Remnant CP

13/18

・ロン ・四と ・ヨン ・ヨン May 24, 2016

F. Gonzalez-Canales (CINVESTA

- ★ The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.
- * The transition probability $P(\nu_{\mu} \rightarrow \nu_{e})$ in matter has the form

Remnant CP

13/18

$$P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \simeq P_{\rm atm} + P_{\rm sol} \pm 2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}}\cos\left(\Delta_{32} \pm \arcsin\left(\frac{\sin\Theta}{\sin 2\theta_{23}}\right)\right)$$

《曰》 《圖》 《臣》 《臣》

May 24, 2016

3

- ★ The existence of leptonic CP violation would show up as the difference of oscillation probabilities between neutrino and anti-neutrinos.
- * The transition probability $P(\nu_{\mu} \rightarrow \nu_{e})$ in matter has the form

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq P_{\rm atm} + P_{\rm sol} \pm 2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}} \cos\left(\Delta_{32} \pm \arcsin\left(\frac{\sin\Theta}{\sin 2\theta_{23}}\right)\right)$$

 \star The neutrino anti-neutrino asymmetry in matter is given by

$$A_{\mu e} = \pm \frac{2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}}\sin\Delta_{23}\sin\Theta}{(P_{\rm atm} + P_{\rm sol})\sin2\theta_{23} \pm 2\sqrt{P_{\rm atm}}\sqrt{P_{\rm sol}}\sqrt{\sin^22\theta_{23} - \sin^2\Theta}\,\cos\Delta_{23}},$$

where

$$\sqrt{P_{\rm atm}} = \sin\theta_{23}\sin2\theta_{13}\frac{\sin(\Delta_{31}-aL)}{(\Delta_{31}-aL)}\,\Delta_{31}\,,\quad \sqrt{P_{\rm sol}} = \cos\theta_{23}\sin2\theta_{12}\frac{\sin(aL)}{aL}\,\Delta_{21}\,,$$

 $\Delta_{kj} = \Delta m_{kj}^2 L/(4E)$ with $\Delta m_{kj}^2 = m_k^2 - m_j^2$, *L* is the baseline, *E* is the energy of neutrino. $a = G_F N_e/\sqrt{2}$, G_F is the Fermi constant and N_e is the density of electrons, with $a \approx (3500 \text{km})^{-1}$ for $\rho Y_e = 3.0 \text{g cm}^{-3}$, where Y_e is the electron fraction.

F. Gonzalez-Canales (CINVESTA

Remnant CP

P 13/18

May 24, 2016

The mixing angle θ_{23} is taken within the 3σ range $0.393 < \sin^2 \theta_{23} < 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values: $\Delta m_{21}^2 = 7.60 \times 10^{-5} \mathrm{eV}^2$ $|\Delta m_{31}^2| = 2.48 \times 10^{-3} \mathrm{eV}^2,$ $\sin \theta_{12} = 0.323$ and $\sin \theta_{13} = 0.0226$. The Θ

parameter is fixed to the value $3\pi/8$. The figure corresponds to the case of normal ordering and the sign combinations.

14 / 18

F. Gonzalez-Canales (CINVESTA

Remnant CP

P 14/18

May 24, 2016

The transition probability $P(\nu_{\mu} \rightarrow \nu_{e})$ at a baseline of 295km which corresponds to the T2K experiment. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin^2 \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values: $\Delta m_{21}^2 = 7.60 \times 10^{-5} \mathrm{eV}^2,$ $|\Delta m_{31}^2| = 2.48 \times 10^{-3} \text{eV}^2$, $\sin \theta_{12} = 0.323$ and $\sin \theta_{13} = 0.0226.$ - 4 三 + 4 三 + <<p>(日)

May 24, 2016

15/18

The transition probability $P(\nu_{\mu} \rightarrow \nu_{e})$ at a baseline of 810km which corresponds to the NO ν A experiment. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin^2 \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values: $\Delta m_{21}^2 = 7.60 \times 10^{-5} \mathrm{eV}^2,$ $|\Delta m_{31}^2| = 2.48 \times 10^{-3} \text{eV}^2$, $\sin \theta_{12} = 0.323$ and $\sin \theta_{13} = 0.0226.$ (4 ≥) + 4 ≥ > <<p>(日)

F. Gonzalez-Canales (CINVESTA

Remnant CP

P 16/18

May 24, 2016

The transition probability $P(\nu_{\mu} \rightarrow \nu_{e})$ at a baseline of 1300km, which corresponds to the DUNE proposal. The mixing angle θ_{23} is taken within the 3σ range $0.393 \leq \sin^2 \theta_{23} \leq 0.643$. The remaining neutrino oscillation parameters are fixed at their best fit values: $\Delta m_{21}^2 = 7.60 \times 10^{-5} \mathrm{eV}^2,$ $|\Delta m_{31}^2| = 2.48 \times 10^{-3} \text{eV}^2,$ $\sin \theta_{12} = 0.323$ and $\sin \theta_{13} = 0.0226.$ ★ E ► < E ►</p>

F. Gonzalez-Canales (CINVESTA

Remnant CP

P 17/18

May 24, 2016

Conclusions

- We have proposed a generalized $\mu \tau$ reflection scenario for leptonic CP violation and derived the corresponding restrictions on lepton flavor mixing parameters.
- In contrast with flavor symmetry schemes, our generalized CP symmetry approach can constrain not only the mixing angles but also the CP violating phases in function of four parameters.
- We found that the "Majorana" phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay amplitudes.
- We have obtained a new correlation between the atmospheric mixing angle θ_{23} and the "Dirac" CP phase δ_{CP} .
- We have also analysed the phenomenological implications of our scheme for present as well as upcoming neutrino oscillation experiments T2K, NO ν A and DUNE.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○