MARTIN HENTSCHINSKI (BUAP \& ICN UNAM)

High gluon densities and 3 parton correlation in DIS at small x
based on Ayala, Hentschinski, Jalilian-Marian, Tejeda Yeomans arXiv:1604.08526

low-density
$A_{\mu} \sim g$ (perturbative)
Qs~1/RS ~ MQCD

Heavy Ion Collisions + high multiplicity events (LHC, RHIC)

- HERA: gluon distribution grows with energy $\sim \mathrm{s}^{\lambda}$
- enhanced in nuclei ($\sim A^{1 / 3}$) \& high multiplicity events
~ collision of two Lorentz contracted sheets of color

\rightarrow high gluon densities!
- Believed: heavy ion collisions at RHIC, LHC = collisions of two Color Glass Condensate
- but what are the correct initial conditions?

best explored in ep/eA collisions \rightarrow control kinematics

$$
\begin{aligned}
& \text { Photon virtuality } \\
& Q^{2}=-q^{2}
\end{aligned}
$$

$\boldsymbol{X}^{\text {Bjorken } \boldsymbol{x}}=\frac{Q^{2}}{2 p \cdot q}$

best so far: inclusive ep@HERA future plans: Electron Ion Colliders (USA ${ }_{\gamma}$ Europe, China)

inclusive DIS: 2 point correlator only $\Gamma\left(x_{1}, x_{2}\right) \sim\left\{A\left(x_{1}\right) A\left(x_{2}\right) \boldsymbol{y}\right.$
higher point correlators

$$
\Gamma\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sim\left\{A\left(x_{1}\right) A\left(x_{2}\right) A\left(x_{3}\right) A\left(x_{4}\right)\right)
$$ require exclusive final states

Azimuthal Di-hadron correlation:
Only on free parameter to explore 4-point correlator $\Gamma\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$
Next step: 3 hadron/jet correlation $=2$ angles

+ will see: ~ (4-point correlator)^2
(di-hadron: linear only)

formal aspects:

- use factorization in the high energy limit $x=Q^{2} / s \rightarrow 0$ (= the limit where gluon production is perturbatively enhanced!)

split gluon field into
- use background field formalism
strong background field $A_{\mu} \sim n_{\mu}^{-} \delta\left(x^{-}\right)$
(classical field with high occupation \#)

$$
A^{\mu} \rightarrow A^{\mu}+\delta A^{\mu}
$$

and (perturbative) quantum correction $\delta A \mu$

Theory: Propagators in background field

use light-cone gauge, with $k^{-}=n^{-} \cdot k,\left(n^{-}\right)^{2}=0, n^{-} \sim$ target momentum

$$
\tilde{S}_{F}^{(0)}(p)=\frac{i \not p+m}{p^{2}-m^{2}+i 0} \quad \tilde{G}_{\mu \nu}^{(0)}(p)=\frac{i d_{\mu \nu}(p)}{p^{2}+i 0}
$$

$$
d_{\mu \nu}(p)=-g_{\mu \nu}+\frac{n_{\mu}^{-} p_{\nu}+p_{\mu} n_{\nu}^{-}}{n^{-} \cdot p}
$$

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...
interaction with the background field:

$$
\begin{aligned}
& \xrightarrow{p} X \rightarrow{ }^{q}=2 \pi \delta\left(p^{-}-q^{-}\right) \not \mathscr{K}^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})} \\
& \cdot\left\{\theta\left(p^{-}\right)[V(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[V^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

$\xrightarrow[900 \times(900]{p}$

$$
\begin{aligned}
=-2 \pi \delta\left(p^{-}\right. & \left.-q^{-}\right) 2 p^{-} \int d^{d-2} \boldsymbol{z} e^{-i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})} \\
& \cdot\left\{\theta\left(p^{-}\right)[U(\boldsymbol{z})-1]-\theta\left(-p^{-}\right)\left[U^{\dagger}(\boldsymbol{z})-1\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{-} A^{+, c}\left(x^{-}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered exponentials (Wilson lines)
aspects of the calculation

space time structure of background field can reduce \# of diagrams $\mathbf{1 6} \boldsymbol{\rightarrow 4}$
loop integrals also for tree-level process

intuitive picture:
background field = t-channel gluons interacting with the target
\rightarrow naturally provide a loop which is factorized \& (partially) absorbed into the projectile in the high energy limit
direct evaluation of Dirac-Traces using FORM, FeynCalC, FormLink possible, but gives lengthy result (100kB)
a popular method in modern high-energy calculation!
basic idea:express numerator in terms of spinors of mass-less momenta with definite helicity

$$
\left|k_{i}^{ \pm}\right\rangle \equiv \frac{1 \pm \gamma^{5}}{2} u_{ \pm}\left(k_{i}\right) \quad \not p=\left|p^{+}\right\rangle\left\langle p^{+}\right|+\left|p^{-}\right\rangle\left\langle p^{-}\right| \quad \epsilon_{\mu}^{ \pm}(k, n)= \pm \frac{\left\langle n^{\mp}\right| \gamma^{\mu}\left|k^{\mp}\right\rangle}{\sqrt{2}\left\langle n^{\mp} \mid k^{ \pm}\right\rangle}
$$

important simplifications through

$$
\left\langle i^{ \pm} \mid j^{ \pm}\right\rangle=0 \quad\left\langle i^{ \pm} \mid i^{\mp}\right\rangle=0
$$

allows to express full result in terms of a few helicity coefficients e.g.

$$
\begin{array}{ll}
\psi_{j, h g}^{L}=\sqrt{2} Q K_{0}\left(Q X_{j}\right) \cdot a_{j, h g}^{(L)}, & \psi_{j, h g}^{T}=\frac{K_{1}\left(Q X_{j}\right)}{-i\left|\boldsymbol{x}_{12}\right| e^{\mp i \phi_{\boldsymbol{x}_{12}}} \cdot a_{j, h g}^{ \pm}} \quad j=1,2 \\
\psi_{3, h g}^{L}=4 \pi i Q \sqrt{2 z_{1} z_{2}} K_{0}\left(Q X_{3}\right)\left(a_{3, h g}^{(L)}+a_{4, h g}^{(L)}\right), & \psi_{3, h g}^{T}=4 \pi Q \sqrt{z_{1} z_{2}} \frac{K_{1}\left(Q X_{3}\right)}{X_{3}}\left(a_{3, h g}^{ \pm}+a_{4, h g}^{ \pm}\right), \\
a_{1,++}^{(L)}=-\frac{\left(z_{1} z_{2}\right)^{3 / 2}\left(z_{1}+z_{3}\right)}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}|\boldsymbol{k}|}}, & a_{1,-+}^{(L)}=-\frac{\sqrt{z_{1}} z_{2}^{3 / 2}\left(z_{1}+z_{3}\right)^{2}}{z_{3} e^{-i \theta_{p}}|\boldsymbol{p}|-z_{1} e^{-i \theta_{k}}|\boldsymbol{k}|}, \quad a_{3,++}^{(L)}=\frac{z_{1} z_{2}}{\left|\boldsymbol{x}_{13}\right| e^{-i \phi_{\boldsymbol{x}_{13}}}},
\end{array}
$$

$$
\frac{d \sigma^{T, L}}{d^{2} \boldsymbol{p} d^{2} \boldsymbol{k} d^{2} \boldsymbol{q} d z_{1} d z_{2}}=\frac{\alpha_{s} \alpha_{e m} e_{f}^{2} N_{c}^{2}}{z_{1} z_{2} z_{3}(2 \pi)^{2}} \prod_{i=1}^{3} \prod_{j=1}^{3} \int \frac{d^{2} \boldsymbol{x}_{i}}{(2 \pi)^{2}} \int \frac{d^{2} \boldsymbol{x}_{j}^{\prime}}{(2 \pi)^{2}} e^{i \boldsymbol{p}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{1}^{\prime}\right)+i \boldsymbol{q}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{2}^{\prime}\right)+i \boldsymbol{k}\left(\boldsymbol{x}_{3}-\boldsymbol{x}_{3}^{\prime}\right)}
$$

$$
\begin{aligned}
& \left\langle(2 \pi) ^ { 4 } \left[\left(\delta^{(2)}\left(\boldsymbol{x}_{13}\right) \delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{1 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right)+\left\{1,1^{\prime}\right\} \leftrightarrow\left\{2,2^{\prime}\right\}\right) N^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}^{\prime}, \boldsymbol{x}_{2}^{\prime}, \boldsymbol{x}_{2}\right)\right.\right. \\
& \left.\quad+\left(\delta^{(2)}\left(\boldsymbol{x}_{23}\right) \delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{2 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right)+\left\{1,1^{\prime}\right\} \leftrightarrow\left\{2,2^{\prime}\right\}\right) N^{(22)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}^{\prime} \mid \boldsymbol{x}_{2}^{\prime}, \boldsymbol{x}_{2}\right)\right] \\
& +(2 \pi)^{2}\left[\delta^{(2)}\left(\boldsymbol{x}_{13}\right) \sum_{h, g} \psi_{1 ; h, g}^{T, L}\left(\boldsymbol{x}_{12}\right) \psi_{3^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}, \boldsymbol{x}_{2^{\prime} 3^{\prime}}\right) N^{(24)}\left(\boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{1^{\prime}} \mid \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}, \boldsymbol{x}_{1}, \boldsymbol{x}_{3^{\prime}}\right)+\{1\} \leftrightarrow\{2\}\right. \\
& \left.\quad+\delta^{(2)}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}\right) \sum_{h, g} \psi_{3 ; h, g}^{T, L}\left(\boldsymbol{x}_{13}, \boldsymbol{x}_{23}\right) \psi_{1^{\prime} ; h, g}^{T, L, *}\left(\boldsymbol{x}_{1^{\prime} 2^{\prime}}\right) N^{(24)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3} \mid \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{1^{\prime}}\right)+\left\{1^{\prime}\right\} \leftrightarrow\left\{2^{\prime}\right\}\right] \\
& \left.+\sum_{h, g} \psi_{3 ; h, g}^{T, L}\left(\boldsymbol{x}_{13}, \boldsymbol{x}_{23}\right) \psi_{3^{\prime} ; h, g}^{T, L}\left(\boldsymbol{x}_{1^{\prime} 3^{\prime}}, \boldsymbol{x}_{2^{\prime} 3^{\prime}}\right) N^{(44)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, \boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{3} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{3^{\prime}}, \boldsymbol{x}_{2^{\prime}}, \boldsymbol{x}_{2}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& N^{(4)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) \equiv \\
& \quad \equiv 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(4)}-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(2)} \\
& N^{(22)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) \equiv \\
& \quad \equiv\left[S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)}-1\right]\left[S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(2)}-1\right] \\
& N^{(24)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \mid \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{6}\right) \equiv \\
& 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)} S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{4} \boldsymbol{x}_{5} \boldsymbol{x}_{6}\right)}^{(4)} \\
& \quad-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)} S_{\left(\boldsymbol{x}_{3} \boldsymbol{x}_{6}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{4} \boldsymbol{x}_{5}\right)}^{(2)} \\
& N^{(44)}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4} \mid \boldsymbol{x}_{5}, \boldsymbol{x}_{6}, \boldsymbol{x}_{7}, \boldsymbol{x}_{8}\right) \equiv \\
& \quad \equiv 1+S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)}^{(4)} S_{\left(\boldsymbol{x}_{5} \boldsymbol{x}_{6} \boldsymbol{x}_{7} \boldsymbol{x}_{8}\right)}^{(4)} \\
& \quad-S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{4}\right)}^{(2)} S_{\left(\boldsymbol{x}_{5} \boldsymbol{x}_{8}\right)}^{(2)}-S_{\left(\boldsymbol{x}_{2} \boldsymbol{x}_{3}\right)}^{(2)} S_{\left(\boldsymbol{x}_{6} \boldsymbol{x}_{7}\right)}^{(2)}
\end{aligned}
$$

full (large N_{c}) result in terms of these wave functions + target correlators

For a first numerical study:

- Quadrupole $S^{(4)}$ expressed in terms of dipoles $S^{(2)}$ (Gaussian/dilute approximation)
- Expand result in $N^{(2)}=1-S^{(2)}$ up linear and quadratic order

$$
\begin{aligned}
S_{\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2}\right)}^{(2)}= & \int d^{2} \boldsymbol{l} e^{-i \boldsymbol{l} \cdot \boldsymbol{x}_{12}} \Phi\left(\boldsymbol{l}^{2}\right) \\
= & 2\left(\frac{Q_{0}\left|\boldsymbol{x}_{12}\right|}{2}\right)^{\rho-1} \frac{K_{\rho-1}\left(Q_{0}\left|\boldsymbol{x}_{12}\right|\right)}{\Gamma(\rho-1)} \\
\text { where } & \Phi\left(\boldsymbol{l}^{2}\right)=\frac{\rho-1}{Q_{0}^{2} \pi}\left(\frac{Q_{0}^{2}}{Q_{0}^{2}+\boldsymbol{l}^{2}}\right)^{\rho}
\end{aligned}
$$

$$
\rho=2.3 \text { and }\left(\mathrm{Q}_{0} \text { proton }\right)^{2}=0.48 \mathrm{GeV}^{2}
$$

$$
\text { (motivated by inclusive DIS fits at } x=0.210^{-3} \text {) }
$$

$$
\left(\mathrm{Q}_{0} \text { gold }\right)^{2}=\mathrm{A}^{1 / 3}\left(\mathrm{Q}_{0} \text { proton }\right)^{2}=2.77 \mathrm{GeV}^{2}
$$

consider deviations from "Mercedes-Benz star configuration (all $\mathrm{p}_{T}=2 \mathrm{GeV}$)
= generalization of back-to-back configuration for 2 partons
(photon momentum fraction $\mathrm{Z}_{\mathrm{q}}=\mathrm{Z}_{\text {qbar }}=0.2, \mathrm{Q}=3 \mathrm{GeV}$)

$$
\mathrm{p}^{2}=4 \mathrm{GeV}^{2}, \mathrm{Q}^{2}=9 \mathrm{GeV}^{2}
$$

proton: very good convergence of expansion in $\mathrm{N}^{(2)}=1-\mathrm{S}^{(2)}$
(\sim saturation effects weak, small saturation scale)
gold:

- linear order: significant broadening of peak at $4 \pi / 3 \rightarrow$ presence of strong \& coherent gluon field
- quadratic order: substantial correction \rightarrow sensitivity to e.g. 4-point correlator

