Global extraction of the parton-to-pion fragmentations at NLO accuracy in QCD

Roger J. Hernández-Pinto FCFM, Universidad Autónoma de Sinaloa

In collaboration with D. de Florian, R. Sassot, M. Epele and M. Stratmann Based on: Phys. Rev. D 91, 014035 (2015)

> XXX Reunión Anual de la DPyC de la SMF May 24th, 2016, BUAP, Puebla.

-Motivation-

- FFs are required in a pQCD calculation to consistently absorb collinear parton-parton singularities.
- The only way to extract them is from fitting experimental data.
- FFs fits assume factorization and universality.

The fitters

Name	Ref.	Species	Error	z_{\min}	Q^2 (GeV ²)		
AKK	[4]	$\pi^{\pm}, K^{\pm}, K^0_s, p, p \Lambda, \Lambda$	no	0.1	$2 - 4 \cdot 10^4$		
AKK08	[5]	$\pi^{\pm}, K^{\pm}, K^0_s, p, p \Lambda, \Lambda$	yes	0.05	$2 - 4 \cdot 10^4$		
BKK	[6]	$\pi^+ + \pi^-, \pi^0, K^+ + K^-, K^0 + K^0, h^+ + h^-$	no	0.05	2 - 200		
BFG	[7]	γ	no	10^{-3}	$2 - 1.2 \cdot 10^4$		
BFGW	[8]	h^{\pm}	yes ¹	10^{-3}	$2 - 1.2 \cdot 10^4$		
CGRW	[9]	π^0	no	10^{-3}	$2 - 1.2 \cdot 10^4$		
DSS	[10, 11]	$\pi^{\pm}, K^{\pm}, p, p, h^{\pm}$	yes ²	0.05-0.1	$1 - 10^5$		
DSV	[12]	polarized and unpolarized Λ	no	0.05	$1 - 10^4$		
GRV	[13]	γ	no	0.05	≥ 1		
HKNS	[14]	$\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0} + K^{0}, n, p + p$	yes	0.01 – 1	$1 - 10^{8}$		
KKP	[15]	$\pi^+ + \pi^-, \pi^0, K^+ + K^-, K^0 + K^0, p + p, n + n, h^+ + h^-$	no	0.1	$1 - 10^4$		
Kretzer	[16]	$\pi^{\pm}, K^{\pm}, h^+ + h^-$	no	0.01	$0.8 - 10^{6}$		

- AKK08: e+e- and pp data / Isospin symmetry for pions.
- HKNS: e+e- data only / Hessian method for uncertainties.

Properties of FFs

• The evolution of FFs is described with the DGLAP type scale evolution:

$$\frac{dD_i^h(z,\mu^2)}{d\ln\mu^2} = \int_z^1 \frac{dy}{y} P_{ji}^T(z,\alpha_s) D_j^h\left(\frac{z}{y},\mu^2\right)$$
$$P_{ji}^T(z,\alpha_s) = \frac{\alpha_s}{4\pi} P_{ji}^{(0)T} + \left(\frac{\alpha_s}{4\pi}\right)^2 P_{ji}^{(1)T} + \left(\frac{\alpha_s}{4\pi}\right)^3 P_{ji}^{(2)T} + \dots$$

• Energy-momentum sum rule:

$$\sum_h \int_0^1 z D_i^h(z,\mu) = 1$$

- A parton fragments into something preserving its momentum with 100% probability.
- Mass effects neglected.

FFs in data: e+e- SIA

• The distribution is given terms of the structure functions,

$$\frac{1}{\sigma_{tot}}\frac{d\sigma^h}{dz} = \frac{\sigma^0}{\sum_q \hat{e}_q^2} \left[2F_1^h(z,Q^2) + F_L^h(z,Q^2)\right]$$

$$2F_1^h(z,Q^2) = \sum_q \hat{e}_q^2 \left\{ \left[D_q^h + D_{\bar{q}}^h \right](z,Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \left[C_q^1 \otimes \left[D_q^h + D_{\bar{q}}^h \right] + C_g^1 \otimes D_g^h \right](z,Q^2) \right\}$$

- Not possible to separate charge and flavour only with SIA.
- Only have information of the singlet.

(a) N L()

FFs in data: SIDIS

• Distributions for SIDIS are given by,

(a)

$$\frac{d\sigma^{h}}{dxdydz^{h}} = \frac{2\pi\alpha_{s}(Q^{2})}{Q^{2}} \left[\frac{1+(1-y)^{2}}{y} 2F_{1}^{h} + \frac{2(1-y)}{y}F_{L}^{h} \right] (x, z_{h}, Q^{2})$$
LO:

$$2F_{1}^{h}(x, z_{h}, Q^{2}) = \sum_{q, \bar{q}} \hat{e}_{q}^{2} \cdot q(x, Q^{2})D_{q}^{h}(z_{h}, Q^{2})$$

@NLO, all coefficients are known: <u>Altarelli et al. '79, Furmanski, Petronzio '82, de Florian, Stratmann, Vogelsang '98</u>

- Charge and flavour separation is achieved by including SIDIS.
- However, gluon FF is not well constrained by SIA and SIDIS data.

FFs in data: Hadron collisions

• The general picture is:

• Therefore, transverse momentum distribution is given by:

$$\frac{d\sigma(pp \to hX)}{dp_T d\eta} = \sum_{i,j,k} \int dx_1 dx_2 dz \left[f_i^P(x_1,\mu_f) f_j^P(x_2,\mu_f) D_k^h(z,\mu_f') \frac{d\hat{\sigma}(ij \to kX')}{dp_T d\eta} \right]$$

- It also allows charge and flavour separation.
- It contains large contributions from gluons.

DSS vs the new fit

- Number of parameters: 23 parameters > 28 parameters.
- HERMES data are replaced and added deuteron target data sets.
- Different treatment for the normalization of the experiments.
- PDFs: MSTW2008.
- Relaxing some of the FFs assumptions.
- Full correlation matrices are not available for some data sets, so errors are added in quadrature (stat & syst).

$$D_{d+\bar{d}}^{\pi^{+}} = N_{d+\bar{d}} D_{u+\bar{u}}^{\pi^{+}} \qquad D_{\bar{u}}^{\pi^{+}} = D_{d}^{\pi^{+}}$$
$$D_{s}^{\pi^{+}} = D_{\bar{s}}^{\pi^{+}} = N_{s} z^{\alpha_{s}} D_{\bar{u}}^{\pi^{+}} \qquad \gamma_{c,b} \neq 0$$

DSS vs the new fit

- pT cut in 5 GeV for pp data.
- We have used a penalisation to the chi[^]2 when the fit goes far from the optimum value,

$$\chi^2 = \sum_{i=1}^{N} \left[\left(\frac{1 - \mathcal{N}_i}{\delta \mathcal{N}_i} \right)^2 + \sum_{j=1}^{N_i} \left(\frac{\mathcal{N}_i T_j - E_j}{\delta E_j} \right)^2 \right]$$

Normalization of each experiment can be computed analytically,

$$\mathcal{N}_{i} = \frac{\sum_{j=1}^{N_{i}} \frac{\delta \mathcal{N}_{i}^{2}}{\delta E_{j}^{2}} T_{j} E_{j} + 1}{\sum_{j=1}^{N_{i}} \frac{\delta \mathcal{N}_{i}^{2}}{\delta E_{j}^{2}} T_{j}^{2} + 1}$$

BELLE & BaBar

- BELLE and BaBar results can be fitted extremely well within the 68 and 90 % C.L.
- There is a drop on the large z regime for BELLE but it is consistent with the uncertainties.
- Large logarithmic corrections are expected at large values of z.

HERMES

- DSS cannot fit the new HERMES data
 for the smallest bin of z.
- In this new analysis, HERMES data have no problems to be fitted within the 68 and 90% C.L. for all bins of z.

COMPASS

- DSS also has some tensions with COMPASS data sets.
- For all values of z,
 COMPASS is well
 fitted.
- It is been shown also in the $chi^2 \sim 1.01$.

PHENIX & STAR

PDF uncertainties where computed with 90%CL **MSTW** and they are less significant than the scale ambiguities.

12

ALICE

- In the range of small pT, RHIC and LHC data showed a tension during the fitting.
- By introducing the cut on the pT, we achieved a reasonable agreement between both data sets.
- Nevertheless, we lost some data sets such as ALICE 900GeV which only stands with one point.
- Contribution of uncertainties due to PDF are again not relevant enough; the main contribution is coming from the scale variation.

parton-to-pion FFs

- Deviations from DSS is found on the gluon and charm FF.
- c-FF has a more flexible
 parametrisation (5 instead of 3
 parameters).
- g-FF uncertainties is about 20% at 90%CL up to z > 0.5 and they increase towards larger values (Q = 10 GeV).

How good is the fit?

	DSS	NOW
Global	843/392(2.15)	1154.6/973(1.19)
LEP-SLAC	500.1/260(1.92)	412.6/260(1.58)
BELLE & BABAR		90.4/123(0.73)
HERMES	188.2/64(2.94)	175/128(1.36)
COMPASS		403.2/398(1.01)
RHIC	160.8/68(2.36)	45.7/53(0.86)
LHC		27.7/11(2.51)

-Conclusions-

- The analysis implemented strongly supports factorization and universality for the parton-to-pion FFs.
- The numerical results shown that the breaking of the charge asymmetry parameter is very close to one.
- Tension between RHIC & LHC data have been avoided when a lower cut is introduced in the proton-proton collisions.
- The new data do not favor any symmetry violation.
- Uncertainties have been estimated using the standard iterative Hessian method.
- An analytic procedure to determine the optimum normalization shift is implemented in the the new analysis.

