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● Motivation... 
– by a student exercise

● Non-extensive statistical approarch
– Fits of experimental spectra from e+e-, pp
– Non-extensive statistical approach

● Can Tsallis – Pareto fit spectra of HIC?
– The soft+hard model and its applications
– Spectra fit and extraction of q and T
– Asimuthal anisotropy from the model  

O U T L I N E 
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P. Lévai, GGB, G. Fai: JPG35, 104111 (2008)

M O T I V A T I O N
● Simplest and best fit to hadron spectra at low-pT & high-pT
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● Why use Tsallis–Pareto distribution? 
● Is it true Boltzmann-Gibbs fits better at low momenta?
● Is it true Power-law distribution is better at high momenta?
● Is it true Tsallis – Pareto fits the whole mumentum range?
● Can we apply this for any system: ee, pp, pA, AA?

● Let's see first a 'known' case:
● PYTHIA6.4: π, K and p production in proton-proton @ 14 TeV
● Fits of Boltzmann-Gibbs, Power law, and Tsallis–Pareto distributions
● Low momenta:  [1.2 GeV/c : 2.0 GeV/c] or  [1.2GeV/c : 5.0 GeV/c] 
● High momenta: [5.0 GeV/c : 15.0 GeV/c]
● Full range: [1.2 GeV/c : 15.0 GeV/c]

The student exercise... 
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What can we learn form a simply exercise?
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The student exercise...
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● Why fit Tsallis–Pareto distribution? 
● Yes, it is true Boltzmann-Gibbs fits better at low momenta.
● Yes, it is true Power-law distribution is better at high momenta.
● Yes, it is true Tsallis – Pareto fits the whole mumentum range.
● Can we apply this for any system: ee, pp, pA, AA?

● But carefully  
● BODY vs. TAIL (dependence on the momentom regions)  
● Need to find the proper variable Ejet, pT, mT, mT* 
● Need for 

– High-pT  PID hadron  data
– High statistic data
– Spectra in several multiplicity bins
– Dream: all of these on track-by-track basis

The student exercise... 
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Application of the non-extensive 
statistical approach on small systems

using experimental data.
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The 'Thermodynamics of Jets'

K. Ürmössy, G.G. Barnaföldi, T.S. Bíró: 

● Microcanonical Jet-Fragmentation in pp at LHC energies:

Phys. Lett. B701 (2011) 111 
● Generalized Tsallis distribution in e+e- collisons 

Phys. Lett. B718 (2012) 125
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Fits for jet spectra in pp  (left) and e+e- (right)

Ref: K Ürmössy, GGB, TS Biró, PLB 710 (2011) 111, PLB 718 (2012) 125. 
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pp

e+e-

The evolution of q and T parameters

K Ürmössy, GGB, TS Biró,                        
PLB 710 (2011) 111, PLB 718 (2012) 125. ● Energy dependence (hard)

– Parameters q seem to saturate at high energies q>1.1
– Parameter T is decreading with increasing energy
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What is the physical meaning of these 
'q' and 'T' parameters? 

 
Eur. Phys. J. A49 (2013) 110,  Physica A 392 (2013) 3132 
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The non-extensive statistical approach

● Extensive Boltzmann – Gibbs statistics
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The non-extensive statistical approach

● Extensive Boltzmann – Gibbs statistics

                      

● Non-extensivity → generalized entropy

● Tsallis entropy

from here: Tsallis – Pareto distribution
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The non-extensive statistical approach

● Tsallis – Pareto distribution
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The non-extensive statistical approach

● Tsallis – Pareto distribution
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The non-extensive statistical approach
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The non-extensive statistical approach



G.G. Barnaföldi: UNAM Seminar 2016 21

What if, we would apply this for 
a bigger system (AA) 

where 
Boltzmann–Gibbs

use to work?
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Test with real data in PbPb 

The power of the spectra 
changes at around 6 GeV/c 

 Power-law with p-6.08 

dependence

Tsallis spectra with p-13.7
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The power of the spectra 
changes at around 6 GeV/c 

 Power-law with p-6.08 

dependence

Tsallis spectra with p-13.7

Handling soft/hard regime 
with a new approach, using 
not only the temperature, T 

Test with real data in PbPb 
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The soft + hard model

● Simplest approximation: soft ('bulk') + hard ('jet') contribution 
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The soft + hard model

● Simplest approximation: soft ('bulk') + hard ('jet') contribution 

● Identified hadron spectra is given by double Tsallis–Pareto:
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The soft + hard model

● Simplest approximation: soft ('bulk') + hard ('jet') contribution 

● Identified hadron spectra is given by double Tsallis–Pareto:

in where parameters are given by

● Lorentz factor
● Transverse mass
● Doppler temperature

● Finally we assume Npart scaling for the parameters
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Fit of pp and PbPb (centra/peripheral) data
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Parameters of the soft+hard model
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Parameters of the soft+hard model
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Parameters of the soft+hard model
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The N
part

 scaling of the q & T parameters

● Scaling of the 

● Soft component, q→1

– LHC:  dereasing
– RHIC: decreasing

Higher Npart result BG statistics

● Hard component, q >1.1

– LHC:   slight increasing
– RHIC: constant

Without the soft part result clearer 
non-extensive behaviour, like e+e-  
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The N
part

 scaling of the q & T parameters

● Scaling of the 

● Soft component, T~200-400 MeV

– LHC:  constant/increasing
– RHIC: slightly increasing

higher Npart results bit higher T

● Hard component, T ~100-300 MeV

– LHC:   decreasing
– RHIC: increasing  

Npart scalimg seems sensitive... 
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The c.m. energy dependence of q & T

softsoft

hardhard
q measures

non-
extensivity
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The c.m. energy dependence of q & T

softsoft

hardhard
q measures

non-
extensivity

T measures
average E

per
multiplicity

softsoft

hardhard
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The c.m. energy dependence of q & T

softsoft

hardhard

softsoft

hardhard

● Energy dependence 

● Parameter q

– HARD: clearly increasing
– SOFT: no relevant change

● Parameter T 

– HARD:  central decreasing
peripheral const? 

Tcentr = Tperiph

– SOFT: similar trend 

Tcentr ~100 MeV higher 
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The c.m. energy dependence of q & T

softsoft

hardhard

softsoft

hardhard

● Energy dependence 

– Parameters q & T present different values for centr./periph. 
– Above RHIC soft is BG-like and hard is more TP-like.

● Energy dependence 

● Parameter q

– HARD: clearly increasing
– SOFT: no relevant change

● Parameter T 

– HARD:  central decreasing
peripheral const? 

Tcentr = Tperiph

– SOFT: similar trend 

Tcentr ~100 MeV higher 
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Can we connect this to 
asimuthal anisotropy?
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Connecting spectra and v
2
 

● Spectra originating from hadronic sources 

where we used parameters and assumptions

● Hadron momenum:
● Cylindric symmetry:

                                  where                             and
● Co-moving energy: 

● Transverse flow:

● Taylor expansion:
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● Spectra originating from hadronic sources 

where                            and 

● Azimuthal anisotropy:

– Boltzmann–Gibbs:

– Tsallis–Pareto:

Connecting spectra and v
2
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● Spectra originating from hadronic sources 

where                            and 

● Azimuthal anisotropy:

● Using the soft+hard model:

          with the coefficient 

Connecting spectra and v
2
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● Using the soft+hard model:

          with the coefficient 

● Assuming v0 only for the soft component v2 can be obtained 

Connecting spectra and v
2
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● Non-extensive statistical approach in e+e- & pp
● Obtained Tsallis/Rényi entropies from the first principles.
● Providing phyiscal meaning of  q=1-1/C + ΔT2/T2

● Boltzmann Gibbs limit C →  & Ꝏ ΔT2/T2   → 0 (q → 1),  
● Tsallis – Pareto fits on spectra in e+e-, pp  
● Not working for larger system, like pA, AA and no flow.

● Application of 'soft+hard' model in AA
● Tsallis – Pareto + Exp does not working.
● Double Tsallis – Pareto measures non-extensitivity
● SOFT: q → 1, suggest Boltzmann Gibbs (QGP)
● HARD: q > 1.1, Tsallis – Pareto like
● Asimuthal anisotropy can be obtained too.

S U M M A R Y 
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ADVERTISEMENT
11th international workshop on High-pT Physics in the RHIC & LHC Era

BNL, USA in April 12-15, 2016. 

Topics

  - Nuclear modifications of the parton distribution functions.

  - High-pT jet production in pp, pA and AA.

  - High-pT parton propagation in matter.

  - Nuclear modifications of the fragmentation functions.

   - Correlations of jets and leading particles.  

    - Direct photons, heavy flavor, quarkonia. 

     - Multiparticle effects (net-charge, net-proton, p-p ridge).

 Information

 For more details see https://www.bnl.gov/pt2016/

 Please reply to: HighPT-workshop@cern.ch by January 20.

Workshop organizers

  Yasuyuki Akiba, Gergely Gábor Barnaföldi, Megan Connors, Gabor David,    Andreas 
Morsch, Takao Sakaguchi, Jan Rak, Michael J. Tannenbaum (local    organizer) 

https://www.bnl.gov/pt2016/
mailto:HighPT-workshop@cern.ch
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  B A C K U P
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The c.m. Energy Dependence of N
soft

 & N
hard

Soft 60%

Hard 40%

Soft 20%

Hard 80%

● Energy dependence Ni/Ntot 

● Central 

– LHC: HARD 40% + SOFT 60%
– RHIC: HARD 80% + SOFT 20%

● Peripheral

– LHC: HARD 80% + SOFT 20%
– RHIC: HARD 10% + SOFT 90%



G.G. Barnaföldi: UNAM Seminar 2016 47

The c.m. Energy Dependence of q & T
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Related publications.. 

1. arXiv:1409.5975: Statistical Power Law due to Reservoir Fluctuations and the Universal 
Thermostat Independence Principle

2. arXiv:1405.3963 Disentangling Soft and Hard Hadron Yields in PbPb Collisions at 
$\sqrt{s_{NN}}$ = 2.76 ATeV

3. arXiv:1405.3813  New Entropy Formula with Fluctuating Reservoir,  Physica A (in Print) 
2014 

4. arXiv:Statistical Power-Law Spectra due to Reservoir Fluctuations 

5. arXiv:1209.5963 Nonadditive thermostatistics and thermodynamics, Journal of Physics, 
Conf. Ser. V394, 012002 (2012)

6. arXiv:1208.2533 Thermodynamic Derivation of the Tsallis and Rényi Entropy Formulas 
and the Temperature of Quark-Gluon Plasma,  EPJ A 49: 110 (2013)

7. arXiv:1204.1508  Microcanonical Jet-fragmentation in proton-proton collisions at LHC 
Energy, Phys. Lett. B, 28942 (2012)

8. arXiv:1101.3522  Pion Production Via Resonance Decay in a Non-extensive Quark-Gluon 
Medium with Non-additive Energy Composition Rule

9. arXiv:1101.3023  Generalised Tsallis Statistics in Electron-Positron Collisions, 
Phys.Lett.B701:111-116,2011

10. arXiv:0802.0381 Pion and Kaon Spectra from Distributed Mass Quark Matter, 
J.Phys.G35:044012,2008
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The story is about...

– Two body thermodynamics:

1 subsystem (E1) +one  reservoir (E-E1)

– Finite system, finite energy → microcanonical description
– microcanonical

– canonical

– Maximize a monotonic function of the Boltzmann-Gibbs 
entropy, L(S) (0th law of thermodynamics)

– Taylor expansion of the L(S) = max, principle beyond -βE

General derivation as inproved canonical 

∑ j
 j=E

∑ j
 j =E
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● For generalized entropy function

● In order to exist β of the system
TS Biró P. Ván: Phys Rev. E84 19902 (2011)

● Thermal contact between system (E1) & reservoir (E-E1), 
requires to eliminate E1 : 

● This is usually handled in canonical limit, but now, we keep 
higher orders in the Taylor-expansion in E1/E

Description of a system & reservoir 
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● Assuming β1=β, the Lagrange multiplicator                                      
become familiar for us:

● To satisfy this, need simply to solve

● Universal Thermostat Independence (UTI)                                             
Principle: l.h.s. must be as anS-independent                                
constant for solving L(S), 

● Based on L(S) →S for small S, coming                                            
from 3rd law of the thermodynamics                                              
L'(0)=1 and L(0)=0 

● EoS derivatives do have physical meaning:

   

Description of a system & reservoir 
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Description of a system & reservoir 

● Assuming β1=β, the Lagrange multiplicator                                      
become familiar for us:

● To satisfy this, need simply to solve

● Universal Thermostat Independence (UTI)                                             
Principle: l.h.s. must be as anS-independent                                
constant for solving L(S), 

● Based on L(S) →S for small S, coming                                            
from 3rd law of the thermodynamics                                              
L'(0)=1 and L(0)=0 

● Simly the heat capacity of the reservoir:
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From two system to many... 
● Analogue to Gibbs ensamble generalize                                            

                                  → 

●

● The L-additive form of a generally non-additive entropy,             
given by:                                                                                             

● Introducing                           →                                                    

● we need to maximize:

which, results Tsallis:

and its inverse Rényi: 
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The temperature slope

● Taking Pi weights of system, Ei , results cut power law:

                                  → 

● Partition sum is related to Tsallis entropy, L(S1) and E1                  
                                                                             

● In C → Ꝏ limit, the inverse log slope of the energy distribution:  

                                                                                                       
                                                         with 
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