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OUTLINE

 Motivation...

- by a student exercise

* Non-extensive statistical approarch

- Fits of experimental spectra from e*e-, pp
— Non-extensive statistical approach

» Can Tsallis — Pareto fit spectra of HIC?

- The soft+hard model and its applications
- Spectra fit and extraction of gand T
— Asimuthal anisotropy from the model
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MOTIVATION
« Simplest and best fit to hadron spectra at low-p; & high-p;

FQCD + Quark Ccaolescence at LHC for pion

n” from quark—coalescence at LHC
w= 0.8,0.7,0.8

Ph+Ph — n*+X ot sV?=5500 Gev
with Shad + Q (L/A=4,8)
0—10 % central ¢oll,

EHE

Cross Section

4 L/A

Incl.

i | T I R B il
Q 2.5 2 7.0 10 122 15 17,8 20

pr (GeV) P

4-6 GeV/c
P. Lévai, GGB, G. Fai: JPG35, 104111 (2008)
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The student exercise...

 Why use Tsallis—Pareto distribution?

e Is it true Boltzmann-Gibbs fits better at low momenta?

e Is it true Power-law distribution is better at high momenta?
e Is it true Tsallis — Pareto fits the whole mumentum range?
« Can we apply this for any system: ee, pp, pA, AA?

e Let's see first a 'known' case:

« PYTHIAG6.4: 11, K and p production in proton-proton @ 14 TeV

Fits of Boltzmann-Gibbs, Power law, and Tsallis—Pareto distributions
Low momenta: [1.2 GeV/c: 2.0 GeV/c]or [1.2GeV/c : 5.0 GeV/c]
High momenta: [5.0 GeV/c : 15.0 GeV/c]

Full range: 1.2 GeV/c : 15.0 GeV/c]
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What can we learn form a simply exercise?
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Pions

Kaons

The student exercise...

Boltzmann-Gibbs Power Law Tsallis—Pareto
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The student exercise...

Boltzmann-Gibbs
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The student exercise...

Boltzmann-Gibbs
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The student exercise...

 Why fit Tsallis—Pareto distribution?

* Yes, it is true Boltzmann-Gibbs fits better at low momenta.
* Yes, it is true Power-law distribution is better at high momenta.
* Yes, it is true Tsallis — Pareto fits the whole mumentum range.
e Can we apply this for any system: ee, pp, pA, AA?

» But carefully

« BODY vs. TAIL (dependence on the momentom regions)
« Need to find the proper variable E,, p;, m;, m;”

jet?
* Need for
- High-p; PID hadron data

- High statistic data
— Spectra in several multiplicity bins

- Dream: all of these on track-by-track basis
G.G. Barnafoldi: UNAM Seminar 2016 9



Application of the non-extensive
statistical approach on small systems
using experimental data.
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The 'Thermodynamics of Jets'

Momentum P Quasi-1D
Space 4
of a jet

. (@) (b)
K. Urmossy, G.G. Barnafoldi, T.S. Biro:

« Microcanonical Jet-Fragmentation in pp at LHC energies:

Phys. Lett. B701 (2011) 111
 (Generalized Tsallis distribution in e*e- collisons
Phys. Lett. B718 (2012) 125
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Fits for jet spectra in pp (left) and e"e” (right)
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Ref: K Urméssy, GGB, TS Biro, PLB 710 (2011) 111, PLB 718 (2012) 125.
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The evolution of g and T parameters

_ i
a=1=+ (p‘l'jet / G"O)I i‘_
Qu = 45709 + 13451 GeV/c 107 =

i =0.13 + 0.01

f ) 1 pp -
—_—g =1+ 1 log log(p Q) 107 T = (p

et o ot Q)"
B i . I:E)[%evfc] SO ...{osﬂﬂ e
=F T
1.5 + - %: + }

+-H t | e'e = “l’ﬂﬁ

1() 10'0 260 -....:llo . . . ....1.$2
Vs [GeV] s/ 2 [GeV]

K Urmossy, GGB, TS Biro,
« Energy dependence (hard) PLB 710 (2011) 111, PLB 718 (2012) 125.

- Parameters q seem to saturate at high energies g>17.17

- Parameter T is decreading with increasing energy
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What is the physical meaning of these
'qg' and 'T" parameters?

Eur. Phys. J. A49 (2013) 110, Physica A 392 (2013) 3132
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The non-extensive statistical approach

 Extensive Boltzmann — Gibbs statistics

S,J_':' — gl -I_ SE ‘ ,5_” — Z‘” 1'[]})
E12 = Ea + E5
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The non-extensive statistical approach

 Extensive Boltzmann — Gibbs statistics

Fio = Ea 4 Es

.IS'J_':' — gl -I_ SE ‘ ,5_” — ZF; 1'[]}),

* Non-extensivity — generalized entropy

L1a(S12) = Li(S1) + La(Sh). - 5 — — (07— p:)
Lip(Ey) = L1(Ey) + La(Es) l—g="" "~
e Tsallis entropy

1 , _
Si2=51+85+(g—1)5,5, == [(S)= f_1||1(1+c;;—1]:,')

from here: Tsallis — Pareto distribution

. f  E] T Eur. Phys. J. A49 (2013) 110,
fley=11+(g—1)=
: Physica A 392 (2013) 3132

'T
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The non-extensive statistical approach

 Tsallis — Pareto distribution

f(e) = ll+

(g —

7—1

: ]
T|

_(S(EP+8"(E)

'!,-il_

(S(E))*

== (5(E))

Eur. Phys. J. A49 (2013) 110,
Physica A 392 (2013) 3132
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The non-extensive statistical approach

 Tsallis — Pareto distribution

fle) = [1+|a - 1
(§'(E)* + §"(E)! 1
= U == {(5'(E))
(S'(E))
(n(n—1)) E
— T=—
ﬁr {ﬂ.} 2 ':._T'n!-}
AT? 1 (e
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2 C me[ﬁ] 1—(q—1j[D+1J Eur. Phys. J. A49 (2013) 110,
Physica A 392 (2013) 3132
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The non-extensive statistical approach

Hadron spectra in pp collisions can be 7 spectrain pp collisions depends

described by the Tsallis distribution: similarly on /s and on the multiplicity |/
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The non-extensive statistical approach

T spectra in pp collisions depends
similarly on /s and on the multiplicity |/

Hadron spectra in pp collisions can b
described by the Tsallis distribution:
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What if, we would apply this for
a bigger system (AA)
where
Boltzmann-Gibbs
use to work?

G.G. Barnafoldi: UNAM Seminar 2016
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Test with real data in PbPb

1?-_ ALICE, PbPb (@ 2.76 ATeV, [0 - 5%] / The power Of the SpeCtra
o L changes at around 6 GeV/c
S 10°F
L — .

2 Power-law with p-6:08
10°F
- / dependence
10°F [ Boltzmann ' /
= | T=293 Mev [,
1012k l‘L e _ ,
e Tsallis spectra with p-137
pT [GeV/c]
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Test with real data in PbPb

10p The power of the specitra
{E ALICE, PbPb @ 2.76 ATeV, [0 - 5%] /
e L changes at around 6 GeV/c
= 1(}'32
E _ soft ﬁxx
- Power-law with p-6:08
10°F ‘

nara |/ dependence

9
107F | Boltzmann
- T =293 MeV

e Tsallis spectra with p-13.7
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Test with real data in PbPb

10F The power of the spectra
1 ALICE, PbPb (@ 2.76 ATeV, [0 - 5%]
o L changes at around 6 GeV/c
S 10°F
L — ]
- Power-law with p--08
10°F
i harcl’/ dependence
10°F [ Boltzmann
= | T =293 MeV
1012f L — _ _
I ul Ja ol Tsallis spectra with p-137
10" 1 10

pT [GeV/c]
\ Handling soft/hard regime

with a new approach, using

not only the temperature, T
G.G. Barnafoldi: UNAM Seminar 2016
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The soft + hard model

« Simplest approximation: soft ('bulk’) + hard ('jet') contribution

sdN  pdNPerd g s

ef"?'l} P

P o P @p

arXiv:1405.3963, 1501.02352, 1501.05959
J.Phys.CS 612 (2015) 012048
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The soft + hard model

« Simplest approximation: soft ('bulk’) + hard ('jet') contribution

sdN  pdNPerd g s

o 'TPp PP p

D
 |dentified hadron spectra is given by double Tsallis—Pareto:

dN (g; — 1) —1/(g.—1)
e fhﬂrd 3 fso i = f‘ij 1+ Yilmr — vypr) — m
2mprdprdy |, It f T, i pT) ]

arXiv:1405.3963, 1501.02352, 1501.05959
J.Phys.CS 612 (2015) 012048
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The soft + hard model

« Simplest approximation: soft ('bulk’) + hard ('jet') contribution

0 dlN 0 dN hard N . AN st
Pep V' Pp P Fp

 |dentified hadron spectra is given by double Tsallis—Pareto:

dN i — 1 —1/(g.—1)
2rprdprdy |, _g = Jhard + Jsogt fi=Ai |1+ < T } [yi(mr — vipr) — m]
Yy ;
In where parameters are given by
* Lorentz factor i =1/4/1- ]
_ ]2 2
e Transverse mass mr = \/pr +m

Do ."Il‘l'l’i'
 Doppler temperature 7" =Ti\/1—,

« Finally we assume N __, scaling for the parameters

G = q2,i T Mi 111{3{})&” /2) arXiv:1405.3963, 1501.02352, 1501.05959
j:_ﬂopp = Tyi+Ti ln[ﬁ,\.’pﬂﬂ} , J.Phys.CS 612 (2015) 012048
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Fit of pp and PbPb (centra/peripheral) data

: ie arXiv:1405.3963, 1501.02352, 1501.05959
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Parameters of the soft+hard model

dN
2mprdprdy

— fhard T fsr:rft

y=0 \
_1I.f['q}_[}

REA [1 N3 [QE ) [’}"::{?HT — UpT) — ’”’1]
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Parameters of the soft+hard model

¢ = q2,i+ piln(Npere/2)

dN
2mprdprdy

T fhard 3 - fsr:rft

y=0 ) \
fE A [1+E|
/

-1/(a-1)

Eﬂﬂﬁﬁ = T11,i +7iIn(Npart)
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Parameters of the soft+hard model

g = i+ piln(Npart/2)

= =|fharda + I
2wprdprdy il . hid fmﬁ
i&é _ 1]\ -1/(g:—-1)
fiF i |14 T i(mr — vipr) — m]
1
ED&;JP = T‘l,i + 7 ln[Npﬂﬂ}
42 .so0ft 42, hard Hsoft Hhard

CMS 1.058 £ 0.025 1.136 £ 0.001 -0.008 £ 0.005 0.005 %+ 0.0003
ALICE | 1.074 £ 0.018 1.131 £ 0.002 -0.009 + 0.004 0.006 + 0.0006
PHENIX [ 1.073 £ 0.016 1.100 £+ 0.002 -0.005 £ 0.004 0.000 £ 0.0006

M MeV]  T{ MeV]  7uopt [MeV]  hara [MeV]

CMS 310 £ 20 126 =+ 5 9.9 £ 3.7 5.3 £ 0.8
ALICE | 266 + 16 194 + 2 11.5 £ 29 -125 £ 0.5
PHENIX [ 165 + 26 192 + 20 93+£55 I8.7 £ 46
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The Npaﬁ scaling of the g & T parameters

e Scaling of the| @ = a2+ i In(Npare/2)

« Soft component, g— 1 - a-a,+ ninNparv2)|
- LHC: dereasing S |
- RHIC: decreasing e ME

Higher N, result BG statistics B
145 —}- i iy
c |

- Hard component, q >7.1 N R "*':}“H
- LHC: slight increasing
- RHIC: constant I

Without the soft part result clearer 1

non-extensive behaviour, like ete-

G.G. Barnafoldi: UNAM Seminar 2016

10 10°
Npart

arXiv:1405.3963, 1501.02352, 1501.05959
J.Phys.CS 612 (2015) 012048
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The Npaﬁ scaling of the g & T parameters

e Scaling of the| 77" = T;,+7In(Nyu)
o Soft component, T~200-400 MeV

g' s PHENIX T=T,+ tIn(Npart)
- LHC: constant/increasing im = cus }
- RHIC: slightly increasing g o i‘
higher N__, results bit higher T~ "

200

 Hard component, T ~7100-300 MeV

- LHC: decreasing
- RHIC: increasing
N

. Scalimg seems sensitive... 1 10 1% \part

arXiv:1405.3963, 1501.02352, 1501.05959
J.Phys.CS 612 (2015) 012048

G.G. Barnafoldi: UNAM Seminar 2016 33



The c.m. energy dependence of g & T
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120
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« Soft

. g Hard
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The c.m. energy dependence of g & T

o-1.35¢
- T, d, central
1-3;*.Soft [
g measures 12"
non- 1.2F
extensivity .15
1.1—
105}-"’,/”’?
10 102 103 Ve [GaVl
3 0-5¢ r, T, central
S 0.45F <o
T measures . ="
average E ab |
J ot } i soft |
per g — !
. = 0= 0.2
mU":IplICIty 0155 J- - hard
0.1F T .
0.05[ |
0:""' ‘ ""mlz IIIII|3
10 10 10 s cev)

~1.35
< - =, q, peripheral

1.3

- = Hard
1.25}

1.15¢

1.2}

« Soft

10 102
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0.45F
o'_.'_ g e SoOft
= 0.4 _Hard
0.35¢
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0.2
0 155

.
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The c.m. energy dependence of g & T

 Energy dependence

« Parameter g

- HARD: clearly increasing
- SOFT: norelevant change = /F&/
« Parameter T e AT Lot

- HARD: central decreasing L

peripheral const? e 7

_ _:: | T <oft! 0022

eantr = Tparpn S T | AT

- SOFT:  similar trend i : g :

T.... ~100 MeV higher

centr
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The c.m. energy dependence of g & T

 Energy dependence

« Parameter g

- HARD: clearly increasing
- SOFT: norelevantchange
e Parameter T

- HARD: central decreasing

peripheral const? i
x| 1 caft s
— ) - . 0.25F f
Tf;‘e"ff i Li . hard e ihar
- SOFT:  similar trend * *
; o o o O T T T ——
T v ~100 MeV higher

 Energy dependence

- Parameters q & T present different values for centr./periph.
- Above RHIC soft is BG-like and hard is more TP-like.
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Can we connect this to
asimuthal anisotropy?
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Connecting spectra and v,

e Spectra originating from hadronic sources

o0 2

dN ) ) .
0 4=
P Fp 1.=.;=_.( “"-'“__( da flu,p"|  —pp
) —0 0

W Fae e
2nprdprdy !5.= g

where we used parameters and assumptions
« Hadron momenum: P = (mrcoshy,mrsmhy, prcosg, pr siny)
e Cylindric symmetry: u"=(ycosh( ysuh{ yveosa, yvsma)
where ¢ = $In[(t+2)/(t-2)] and .y = 1/V1-12
« Co-moving energy: upp“L_:D = y|mr cosh { — vpr cos(p — @)

e Transverse flow: via) = vy + OV cos(ma) = vy + o)

[~z

I
[e—

M

(]

L+

. [ov{e)]™ ™ va) =y
. Taylor expansion:  fwrl,0=),—; o S oo

21

1l
=

=
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Connecting spectra and v,

e Spectra originating from hadronic sources

I
)

aN _ ﬂ?‘F 0 ﬁ’a - iy O g
2rprdprdy v=10 - ,f 2 P Z m! '}pﬂl f'E{h:']‘ f I:l]| G(m }l
} 0
2

where E() = ymr —vpy) @nd  aw = [ da [6w(@)]™
0

« Azimuthal anisotropy:

2 .-;:j' N
3 n
G|' @ cos(ng) p° &p ;}v")ﬂi (vomr — pr)f'| E(w)] G(’ M ]
Vi = 3 ® | ) |
o s 2 f1Ew)] o
| dg PO —|
:..:I ':Ir _I.U _1'=|3

v BV,

- Boltzmann-Gibbs; —» 6= (or —vomr) + O(8V)

-
£~ exp| — BE(vo)]. )
- 3
_ 5 OB pr — VoM
_ _ . Voo .
Tsallis—Pareto: —_— ) 1+(g- DByolmr —vop7)

f~[1+(@~ DREG]VaD
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Connecting spectra and v,

e Spectra originating from hadronic sources

I
)

dN _ [de r:L | iy & g
2rprdprdy|,_, f ot Z m! s J1EOD] ~ flEM)] + G(m ]]
’ 0
2
where E(w) = yy(mr —vgpr) @nd @y = |I da [dvia)]™.
0
« Azimuthal anisotropy:
|I."I'I'jiI E]il-ﬂ'l'r
) ‘FCGE{Hb] F (3'73 ﬁ"‘.:”)/gl(pﬂ MmT —prjf|££‘pﬂ:}| G(h 3.]
Vp = - & " T v
o 0 9N 2 f1E(v)] o
:C: ':Irsp-_r:l}
e Using the soft+hard model:
. . . . oviy; pr = Vimr
yy = Mhod Jrard * Wit Jeoit - with the coefficient wi=—7 P
- Jhard + fooft 142 — |yi(mr —vi pr) - m|
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Connecting spectra and v,

e Using the soft+hard model:
Whard fhard + Wsaft feofi
.ﬁmrd + .f;r.:-ﬂ

av; yf DT — V;M7

with the coefficient "~ 7T .~ ¢-1
T:

o

Yy =

[yilmr = vipr) —m|

« Assuming v, only for the soft component v, can be obtained

Vo,soft

10°g
1; PV, e CENTral = i ALICE, PbPb @ 2.76 ATeV, 10 - 50[%]
0.9;— » Soft ‘:;?u L
0.8 10F .
0.7E }
0.6F ! 13k
0.5%— :
0.4;— 1ok
R T T
(s [GeV]
mfcr‘ i 10 10°

T ! pT [(313\#0]
arXiv:1405.3963, 1501.02352, 1501.05959

J.Phys.CS 612 (2015) 012048
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SUMMARY

* Non-extensive statistical approach in ete- & pp

» Obtained Tsallis/Rényi entropies from the first principles.
* Providing phyiscal meaning of q=1-1/C + AT?/T2

» Boltzmann Gibbs limit C — Q0 & AT?/T2 — 0 (q — 1),

« Tsallis — Pareto fits on spectra in e*e-, pp

e Not working for larger system, like pA, AA and no flow.

* Application of 'soft+hard' model in AA

» Tsallis — Pareto + Exp does not working.

e Double Tsallis — Pareto measures non-extensitivity
« SOFT: g — 1, suggest Boltzmann Gibbs (QGP)

« HARD: g > 1.1, Tsallis — Pareto like

« Asimuthal anisotropy can be obtained too.
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ADVERTISEMENT

11th international workshop on High-pT Physics in the RHIC & LHC Era
BNL, USA in April 12-15, 2016.

Topics

- Nuclear modifications of the parton distribution functions. High pT Physics inth

RIKEN BNL Research Center Workshop

- ngh_pT Jet productlon 11’1 pp’ pA and AA April 12-15, 2016 at Brookhaven National Laboratory

- High-pT parton propagation in matter.

Homepage | Registration | Agenda | Contact Us | Workshop Information -

- Nuclear modifications of the fragmentation functions.

. . . ) High pT Physics in the RHIC-LHC Era
- Correlations of jets and leading particles.
General Workshop Registration (Deadline: March 1, 2016)

Additional BNL Guest Registration (Deadline: March 1, 2016) (1) Workshop Dates
April 12-15, 2016

- Direct photons, heavy flavor, quarkonia.

Workshop Venue
Brookhaven National Laboratory
Upton, NY 11973 USA

- Multiparticle effects (net-charge, net-proton, p-p ridge). . Workehop Location

Physics Department (Bldg. 510)

. This will be the 11th Workshop in the series which began at the ECT* in Trento, Italy in Large Seminar Room
Informatlon September 2006 as a "Workshop on Jet Physics in Heavy Ion Collisions at the LHC" - "
i 2 3 ; 2 : : Map and Directions
continued in Jyvaskyla, Finland in February 2007, Tokaj, Hungary in March 2008, Prague, To Event | To BNL

Czech Republic in 2009, etc. This will be the first meeting in the United States.
Workshop Coordinator

FOI’ more detalls S€C httpS//WWanlgOV/ptzo 1 6/ The purpose of this workshop is to offer an opportunity for both experimentalists and ;2? Ezﬁ?;i:iﬁogj
theorists to get together and discuss the latest experimental results from RHIC and LHC and Fa><" 631-344-4047

Please reply to: HighPT-workshop(@cern.ch by January 20.

Workshop organizers

Yasuyuki Akiba, Gergely Gabor Barnafoldi, Megan Connors, Gabor David, Andreas
Morsch, Takao Sakaguchi, Jan Rak, Michael J. Tannenbaum (local organizer)
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The c.m. Energy Dependence of N = & N

soft hard
« Energy dependence N/N,, ;:j z::u Soft 60%
« Central 05_
— LHC: HARD 40% + SOFT 60% :
0.3 0
_ RHIC: HARD 80% + SOFT 20% : Hard 40%
P T E[Gm
 Peripheral R
5 L m, N, peripheral
_ . o) o) < 1_5:_.Soft
LHC: HARD 80% + SOFT 20% é e Hard 80%
- RHIC: HARD 10% + SOFT 90% =_1i i,

- |

'Soft 2?%

-1_""| R F| Ll Lol
03

Vs [GeV]
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The c.m. Energy Dependence of g & T
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- = Hard
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C A, Hard -
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G.G. Barnafoldi: UNAM Seminar 2016 47



Related publications..

1. arXiv:1409.5975: Statistical Power Law due to Reservoir Fluctuations and the Universal
Thermostat Independence Principle

2. arXiv:1405.3963 Disentangling Soft and Hard Hadron Yields in PbPb Collisions at
$\sqrt{s_{NN}}$ = 2.76 ATeV

3. arXiv:1405.3813 New Entropy Formula with Fluctuating Reservoir, Physica A (in Print)
2014

4. arXiv:Statistical Power-Law Spectra due to Reservoir Fluctuations

5. arXiv:1209.5963 Nonadditive thermostatistics and thermodynamics, Journal of Physics,
Conf. Ser. V394, 012002 (2012)

6. arXiv:1208.2533 Thermodynamic Derivation of the Tsallis and Rényi Entropy Formulas
and the Temperature of Quark-Gluon Plasma, EPJ A49: 110 (2013)

7. arXiv:1204.1508 Microcanonical Jet-fragmentation in proton-proton collisions at LHC
Energy, Phys. Lett. B, 28942 (2012)

8. arXiv:1101.3522 Pion Production Via Resonance Decay in a Non-extensive Quark-Gluon
Medium with Non-additive Energy Composition Rule

9. arXiv:1101.3023 Generalised Tsallis Statistics in Electron-Positron Collisions,
Phys.Lett.B701:111-116,2011

10. arXiv:0802.0381 Pion and Kaon Spectra from Distributed Mass Quark Matter,
J.Phys.G35:044012,2008
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General derivation as inproved canonical
The story is about...

Two body thermodynamics:
1 subsystem (E,) +one reservoir (E-E,)

Finite system, finite energy — microcanonical description

_ . ' c=F g g g
microcanonical Z @ eeg@

. <€.>=

Maximize a monotonic function of the Boltzmann-Gibbs
entropy, L(S) (Ot law of thermodynamics)

Taylor expansion of the L(S) = max, principle beyond -GE

G.G. Barnafoldi: UNAM Seminar 2016
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Description of a system & reservoir

For generalized entropy function L(S12) = L(S1) + L(S3)
In order to exist B of the system L(S(Ey))+L(S(E-E;)) = max

TS Biré P. Van: Phys Rev. E84 19902 (2011)

Thermal contact between system (E,) & reservoir (E-E,),
requires to eliminate E, :
By = L' (S(Ey)) - S'(Ey)
=L'(S(E— Ey))-S'(E — Ey)

This is usually handled in canonical limit, but now, we keep
higher orders in the Taylor-expansion in E./E

B, = L' (S(E)) - S'(E)|~ [S'(E)’L"(S(E)) + S"(E)L'(S(E))| E1 + ...
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Description of a system & reservoir

Assuming B,=@, the Lagrange multiplicator - ; 1
become familiar for us: p=L(5E))-5(E)=L(5) 7
To satisfy this, need simply to solve L"(S) S"(E)

L'(S) — S'(E)?
Universal Thermostat Independence (UTI)
Principle: I.h.s. must be as anS-independent L7(5) _
constant for solving L(S), L'(S)
Based on L(S) —S for small S, coming CE |
from 3 law of the thermodynamics L(5)=—
L'(0)=1and L(0)=0

S(E)=1/T

EoS derivatives do have physical meaning: S"(E) = —1/CT?
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Description of a system & reservoir

Assuming B,=8, the Lagrange multiplicator
become familiar for us:

To satisfy this, need simply to solve

Universal Thermostat Independence (UTI)
Principle: I.h.s. must be as anS-independent
constant for solving L(S),

Based on L(S) —S for small S, coming
from 3 law of the thermodynamics
L'(0)=1and L(0)=0

Simly the heat capacity of the reservoir:
G.G. Barnaf6ldi: UNAM Seminar 2016
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From two system to many...

Analogue to Gibbs ensamble generalize
S=—->,PlmP;, 7 L(S=) PL(-InP)

The L-additive form of a generally non-additive entropy,
g|Ven by L {S{Elﬂ — SE:[ — l (EﬂSiElJ — 1) — 3E1 = IMnax.

(1

Introducing a=1/C(E] — L(S(Ey))=L(-InP))= % (P -1)

1 l_ﬂ- ¢ I . — -
we need to maximize: EZ (P~ = B —.JZHE - GZR — max.
1
: . STsnl]j:s = L{S:l = — (Pz — Pfr
which, results Tsallis: 1 qg—14&
o, e Q@ q
and its inverse Rényi: PRényi 1= 0 = ¢ anﬂ

G.G. Barnafoldi: UNAM Seminar 2016
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The temperature slope

« Taking P, weights of system, E, , results cut power law:

& Zl—q : -SE rg_il' 1 | Z—lla’[.rESl.-"f' E:
1-_( L ) ‘E( T :r)

_C

 Partition sum is related to Tsallis entropy, L(S,) and E,

IngZ :=C (26 -1) = L(S)) -

1
SE
o L

* |n C — oo limit, the inverse log slope of the energy distribution:

*z-l-:.‘-'pf_ 1',} = (

d
—Elﬂp

~1
) _Ty+E/C with T, =TeS/CZ21/C(1-1/0)
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